method_name
stringlengths
1
78
method_body
stringlengths
3
9.66k
full_code
stringlengths
31
10.7k
docstring
stringlengths
4
4.74k
_import_interaction_tool
from langchain_community.tools.interaction.tool import StdInInquireTool return StdInInquireTool
def _import_interaction_tool() ->Any: from langchain_community.tools.interaction.tool import StdInInquireTool return StdInInquireTool
null
assign
"""Assigns new fields to the dict output of this runnable. Returns a new runnable.""" from langchain_core.runnables.passthrough import RunnableAssign return self | RunnableAssign(RunnableParallel(kwargs))
def assign(self, **kwargs: Union[Runnable[Dict[str, Any], Any], Callable[[ Dict[str, Any]], Any], Mapping[str, Union[Runnable[Dict[str, Any], Any], Callable[[Dict[str, Any]], Any]]]]) ->RunnableSerializable[Any, Any]: """Assigns new fields to the dict output of this runnable. Returns a new runnable.""" from langchain_core.runnables.passthrough import RunnableAssign return self | RunnableAssign(RunnableParallel(kwargs))
Assigns new fields to the dict output of this runnable. Returns a new runnable.
test_pandas_output_parser_col_oob
try: parser.parse_folder('row:10') assert False, 'Should have raised OutputParserException' except OutputParserException: assert True
def test_pandas_output_parser_col_oob() ->None: try: parser.parse_folder('row:10') assert False, 'Should have raised OutputParserException' except OutputParserException: assert True
null
test_solve_sudoku_k_too_small
"""Test simple question that should not need python.""" tot_chain = ToTChain(llm=fake_llm_sudoku, checker=SudokuChecker(), k=len( solutions) - 1, c=4, tot_strategy_class=SampleCoTStrategy) output = tot_chain.run({'problem_description': ''}) assert output != sudoku_solution
@pytest.mark.requires('jinja2') def test_solve_sudoku_k_too_small(fake_llm_sudoku: FakeLLM) ->None: """Test simple question that should not need python.""" tot_chain = ToTChain(llm=fake_llm_sudoku, checker=SudokuChecker(), k= len(solutions) - 1, c=4, tot_strategy_class=SampleCoTStrategy) output = tot_chain.run({'problem_description': ''}) assert output != sudoku_solution
Test simple question that should not need python.
set_llm_chain
llm_chain = values.get('llm_chain') llm = values.get('llm') few_shot_template = values.get('template') if not llm_chain: if llm is None or few_shot_template is None: raise ValueError( 'Both llm and few_shot_template must be provided if llm_chain is not given.' ) values['llm_chain'] = LLMChain(llm=llm, prompt=few_shot_template) return values
@root_validator(pre=False, skip_on_failure=True) def set_llm_chain(cls, values: Dict[str, Any]) ->Dict[str, Any]: llm_chain = values.get('llm_chain') llm = values.get('llm') few_shot_template = values.get('template') if not llm_chain: if llm is None or few_shot_template is None: raise ValueError( 'Both llm and few_shot_template must be provided if llm_chain is not given.' ) values['llm_chain'] = LLMChain(llm=llm, prompt=few_shot_template) return values
null
ignore_chain
"""Whether to ignore chain callbacks.""" return self.ignore_chain_
@property def ignore_chain(self) ->bool: """Whether to ignore chain callbacks.""" return self.ignore_chain_
Whether to ignore chain callbacks.
test_chat_ai_endpoints
"""Test ChatNVIDIA wrapper.""" chat = ChatNVIDIA(model='llama2_13b', temperature=0.7) message = HumanMessage(content='Hello') response = chat([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
def test_chat_ai_endpoints() ->None: """Test ChatNVIDIA wrapper.""" chat = ChatNVIDIA(model='llama2_13b', temperature=0.7) message = HumanMessage(content='Hello') response = chat([message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
Test ChatNVIDIA wrapper.
create_review_request
""" Creates a review request on *THE* open pull request that matches the current active_branch. Parameters: reviewer_username(str): The username of the person who is being requested Returns: str: A message confirming the creation of the review request """ pull_requests = self.github_repo_instance.get_pulls(state='open', sort= 'created') pr = next((pr for pr in pull_requests if pr.head.ref == self.active_branch), None) if pr is None: return ( f'No open pull request found for the current branch `{self.active_branch}`' ) try: pr.create_review_request(reviewers=[reviewer_username]) return ( f'Review request created for user {reviewer_username} on PR #{pr.number}' ) except Exception as e: return f'Failed to create a review request with error {e}'
def create_review_request(self, reviewer_username: str) ->str: """ Creates a review request on *THE* open pull request that matches the current active_branch. Parameters: reviewer_username(str): The username of the person who is being requested Returns: str: A message confirming the creation of the review request """ pull_requests = self.github_repo_instance.get_pulls(state='open', sort= 'created') pr = next((pr for pr in pull_requests if pr.head.ref == self. active_branch), None) if pr is None: return ( f'No open pull request found for the current branch `{self.active_branch}`' ) try: pr.create_review_request(reviewers=[reviewer_username]) return ( f'Review request created for user {reviewer_username} on PR #{pr.number}' ) except Exception as e: return f'Failed to create a review request with error {e}'
Creates a review request on *THE* open pull request that matches the current active_branch. Parameters: reviewer_username(str): The username of the person who is being requested Returns: str: A message confirming the creation of the review request
from_llm_and_tools
prompt = AutoGPTPrompt(ai_name=ai_name, ai_role=ai_role, tools=tools, input_variables=['memory', 'messages', 'goals', 'user_input'], token_counter=llm.get_num_tokens) human_feedback_tool = HumanInputRun() if human_in_the_loop else None chain = LLMChain(llm=llm, prompt=prompt) return cls(ai_name, memory, chain, output_parser or AutoGPTOutputParser(), tools, feedback_tool=human_feedback_tool, chat_history_memory= chat_history_memory)
@classmethod def from_llm_and_tools(cls, ai_name: str, ai_role: str, memory: VectorStoreRetriever, tools: List[BaseTool], llm: BaseChatModel, human_in_the_loop: bool=False, output_parser: Optional[ BaseAutoGPTOutputParser]=None, chat_history_memory: Optional[ BaseChatMessageHistory]=None) ->AutoGPT: prompt = AutoGPTPrompt(ai_name=ai_name, ai_role=ai_role, tools=tools, input_variables=['memory', 'messages', 'goals', 'user_input'], token_counter=llm.get_num_tokens) human_feedback_tool = HumanInputRun() if human_in_the_loop else None chain = LLMChain(llm=llm, prompt=prompt) return cls(ai_name, memory, chain, output_parser or AutoGPTOutputParser (), tools, feedback_tool=human_feedback_tool, chat_history_memory= chat_history_memory)
null
test_query
result = self.kuzu_graph.query('MATCH (n:Movie) RETURN n.name ORDER BY n.name') excepted_result = [{'n.name': 'The Godfather'}, {'n.name': 'The Godfather Coda: The Death of Michael Corleone'}, {'n.name': 'The Godfather: Part II'}] self.assertEqual(result, excepted_result)
def test_query(self) ->None: result = self.kuzu_graph.query( 'MATCH (n:Movie) RETURN n.name ORDER BY n.name') excepted_result = [{'n.name': 'The Godfather'}, {'n.name': 'The Godfather Coda: The Death of Michael Corleone'}, {'n.name': 'The Godfather: Part II'}] self.assertEqual(result, excepted_result)
null
build_extra
"""Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get('model_kwargs', {}) for field_name in list(values): if field_name in extra: raise ValueError(f'Found {field_name} supplied twice.') if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f'Parameters {invalid_model_kwargs} should be specified explicitly. Instead they were passed in as part of `model_kwargs` parameter.' ) values['model_kwargs'] = extra return values
@root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) ->Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get('model_kwargs', {}) for field_name in list(values): if field_name in extra: raise ValueError(f'Found {field_name} supplied twice.') if field_name not in all_required_field_names: logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) if invalid_model_kwargs: raise ValueError( f'Parameters {invalid_model_kwargs} should be specified explicitly. Instead they were passed in as part of `model_kwargs` parameter.' ) values['model_kwargs'] = extra return values
Build extra kwargs from additional params that were passed in.
test_similarity_search_with_metadata_and_additional
"""Test end to end construction and search with metadata and additional.""" texts = ['foo', 'bar', 'baz'] metadatas = [{'page': i} for i in range(len(texts))] docsearch = Weaviate.from_texts(texts, embedding_openai, metadatas= metadatas, weaviate_url=weaviate_url) output = docsearch.similarity_search('foo', k=1, additional=['certainty']) assert output == [Document(page_content='foo', metadata={'page': 0, '_additional': {'certainty': 1}})]
@pytest.mark.vcr(ignore_localhost=True) def test_similarity_search_with_metadata_and_additional(self, weaviate_url: str, embedding_openai: OpenAIEmbeddings) ->None: """Test end to end construction and search with metadata and additional.""" texts = ['foo', 'bar', 'baz'] metadatas = [{'page': i} for i in range(len(texts))] docsearch = Weaviate.from_texts(texts, embedding_openai, metadatas= metadatas, weaviate_url=weaviate_url) output = docsearch.similarity_search('foo', k=1, additional=['certainty']) assert output == [Document(page_content='foo', metadata={'page': 0, '_additional': {'certainty': 1}})]
Test end to end construction and search with metadata and additional.
template_is_valid
"""Check that prefix, suffix, and input variables are consistent.""" if values['validate_template']: check_valid_template(values['prefix'] + values['suffix'], values[ 'template_format'], values['input_variables'] + list(values[ 'partial_variables'])) elif values.get('template_format'): values['input_variables'] = [var for var in get_template_variables( values['prefix'] + values['suffix'], values['template_format']) if var not in values['partial_variables']] return values
@root_validator() def template_is_valid(cls, values: Dict) ->Dict: """Check that prefix, suffix, and input variables are consistent.""" if values['validate_template']: check_valid_template(values['prefix'] + values['suffix'], values[ 'template_format'], values['input_variables'] + list(values[ 'partial_variables'])) elif values.get('template_format'): values['input_variables'] = [var for var in get_template_variables( values['prefix'] + values['suffix'], values['template_format']) if var not in values['partial_variables']] return values
Check that prefix, suffix, and input variables are consistent.
route
""" Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result['destination'], result['next_inputs'])
def route(self, inputs: Dict[str, Any], callbacks: Callbacks=None) ->Route: """ Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object """ result = self(inputs, callbacks=callbacks) return Route(result['destination'], result['next_inputs'])
Route inputs to a destination chain. Args: inputs: inputs to the chain callbacks: callbacks to use for the chain Returns: a Route object
validate_size
if 'size' in values: size = values['size'] model_name = values['model_name'] if size not in SUPPORTED_IMAGE_SIZES[model_name]: raise RuntimeError(f'size {size} is not supported by {model_name}') return values
@root_validator(pre=True) def validate_size(cls, values: Dict) ->Dict: if 'size' in values: size = values['size'] model_name = values['model_name'] if size not in SUPPORTED_IMAGE_SIZES[model_name]: raise RuntimeError(f'size {size} is not supported by {model_name}') return values
null
embed_with_retry
"""Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) ->Any: result = [] i = 0 input_data = kwargs['input'] while i < len(input_data): kwargs['input'] = input_data[i:i + 25] resp = embeddings.client.call(**kwargs) if resp.status_code == 200: result += resp.output['embeddings'] elif resp.status_code in [400, 401]: raise ValueError( f"""status_code: {resp.status_code} code: {resp.code} message: {resp.message}""" ) else: raise HTTPError( f"""HTTP error occurred: status_code: {resp.status_code} code: {resp.code} message: {resp.message}""" , response=resp) i += 25 return result return _embed_with_retry(**kwargs)
def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) ->Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) ->Any: result = [] i = 0 input_data = kwargs['input'] while i < len(input_data): kwargs['input'] = input_data[i:i + 25] resp = embeddings.client.call(**kwargs) if resp.status_code == 200: result += resp.output['embeddings'] elif resp.status_code in [400, 401]: raise ValueError( f"""status_code: {resp.status_code} code: {resp.code} message: {resp.message}""" ) else: raise HTTPError( f"""HTTP error occurred: status_code: {resp.status_code} code: {resp.code} message: {resp.message}""" , response=resp) i += 25 return result return _embed_with_retry(**kwargs)
Use tenacity to retry the embedding call.
list
"""Returns a list of all exposed (enabled) actions associated with current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return list can be empty if no actions exposed. Else will contain a list of action objects: [{ "id": str, "description": str, "params": Dict[str, str] }] `params` will always contain an `instructions` key, the only required param. All others optional and if provided will override any AI guesses (see "understanding the AI guessing flow" here: https://nla.zapier.com/docs/using-the-api#ai-guessing) """ session = self._get_session() try: response = session.get(self.zapier_nla_api_base + 'exposed/') response.raise_for_status() except requests.HTTPError as http_err: if response.status_code == 401: if self.zapier_nla_oauth_access_token: raise requests.HTTPError( f"An unauthorized response occurred. Check that your access token is correct and doesn't need to be refreshed. Err: {http_err}" , response=response) raise requests.HTTPError( f'An unauthorized response occurred. Check that your api key is correct. Err: {http_err}' , response=response) raise http_err return response.json()['results']
def list(self) ->List[Dict]: """Returns a list of all exposed (enabled) actions associated with current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return list can be empty if no actions exposed. Else will contain a list of action objects: [{ "id": str, "description": str, "params": Dict[str, str] }] `params` will always contain an `instructions` key, the only required param. All others optional and if provided will override any AI guesses (see "understanding the AI guessing flow" here: https://nla.zapier.com/docs/using-the-api#ai-guessing) """ session = self._get_session() try: response = session.get(self.zapier_nla_api_base + 'exposed/') response.raise_for_status() except requests.HTTPError as http_err: if response.status_code == 401: if self.zapier_nla_oauth_access_token: raise requests.HTTPError( f"An unauthorized response occurred. Check that your access token is correct and doesn't need to be refreshed. Err: {http_err}" , response=response) raise requests.HTTPError( f'An unauthorized response occurred. Check that your api key is correct. Err: {http_err}' , response=response) raise http_err return response.json()['results']
Returns a list of all exposed (enabled) actions associated with current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return list can be empty if no actions exposed. Else will contain a list of action objects: [{ "id": str, "description": str, "params": Dict[str, str] }] `params` will always contain an `instructions` key, the only required param. All others optional and if provided will override any AI guesses (see "understanding the AI guessing flow" here: https://nla.zapier.com/docs/using-the-api#ai-guessing)
on_llm_end
if self.__has_valid_config is False: return try: token_usage = (response.llm_output or {}).get('token_usage', {}) parsed_output: Any = [(_parse_lc_message(generation.message) if hasattr (generation, 'message') else generation.text) for generation in response.generations[0]] if len(parsed_output) == 1: parsed_output = parsed_output[0] self.__track_event('llm', 'end', run_id=str(run_id), parent_run_id=str( parent_run_id) if parent_run_id else None, output=parsed_output, token_usage={'prompt': token_usage.get('prompt_tokens'), 'completion': token_usage.get('completion_tokens')}, app_id=self. __app_id) except Exception as e: logger.error(f'[LLMonitor] An error occurred in on_llm_end: {e}')
def on_llm_end(self, response: LLMResult, *, run_id: UUID, parent_run_id: Union[UUID, None]=None, **kwargs: Any) ->None: if self.__has_valid_config is False: return try: token_usage = (response.llm_output or {}).get('token_usage', {}) parsed_output: Any = [(_parse_lc_message(generation.message) if hasattr(generation, 'message') else generation.text) for generation in response.generations[0]] if len(parsed_output) == 1: parsed_output = parsed_output[0] self.__track_event('llm', 'end', run_id=str(run_id), parent_run_id= str(parent_run_id) if parent_run_id else None, output= parsed_output, token_usage={'prompt': token_usage.get( 'prompt_tokens'), 'completion': token_usage.get( 'completion_tokens')}, app_id=self.__app_id) except Exception as e: logger.error(f'[LLMonitor] An error occurred in on_llm_end: {e}')
null
get_num_tokens
"""Calculate number of tokens.""" if not self.count_tokens: raise NameError('Please ensure the anthropic package is loaded') return self.count_tokens(text)
def get_num_tokens(self, text: str) ->int: """Calculate number of tokens.""" if not self.count_tokens: raise NameError('Please ensure the anthropic package is loaded') return self.count_tokens(text)
Calculate number of tokens.
test_on_llm_end_azure_openai
response = LLMResult(generations=[], llm_output={'token_usage': { 'prompt_tokens': 1000, 'completion_tokens': 1000, 'total_tokens': 2000}, 'model_name': model_name}) handler.on_llm_end(response) assert handler.total_cost == expected_cost
@pytest.mark.parametrize('model_name,expected_cost', [('gpt-35-turbo', 0.0035), ('gpt-35-turbo-0301', 0.0035), ('gpt-35-turbo-0613', 0.0035), ('gpt-35-turbo-16k-0613', 0.007), ('gpt-35-turbo-16k', 0.007), ('gpt-4', 0.09), ('gpt-4-0314', 0.09), ('gpt-4-0613', 0.09), ('gpt-4-32k', 0.18), ('gpt-4-32k-0314', 0.18), ('gpt-4-32k-0613', 0.18)]) def test_on_llm_end_azure_openai(handler: OpenAICallbackHandler, model_name: str, expected_cost: float) ->None: response = LLMResult(generations=[], llm_output={'token_usage': { 'prompt_tokens': 1000, 'completion_tokens': 1000, 'total_tokens': 2000}, 'model_name': model_name}) handler.on_llm_end(response) assert handler.total_cost == expected_cost
null
test_promptlayer_chat_openai_streaming
"""Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = PromptLayerChatOpenAI(max_tokens=10, streaming=True, temperature=0, callback_manager=callback_manager, verbose=True) message = HumanMessage(content='Hello') response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage)
def test_promptlayer_chat_openai_streaming() ->None: """Test that streaming correctly invokes on_llm_new_token callback.""" callback_handler = FakeCallbackHandler() callback_manager = CallbackManager([callback_handler]) chat = PromptLayerChatOpenAI(max_tokens=10, streaming=True, temperature =0, callback_manager=callback_manager, verbose=True) message = HumanMessage(content='Hello') response = chat([message]) assert callback_handler.llm_streams > 0 assert isinstance(response, BaseMessage)
Test that streaming correctly invokes on_llm_new_token callback.
add_texts_with_embeddings
"""Run more texts through the embeddings and add to the vectorstore. Args: texts: List of strings to add to the vectorstore. embs: List of lists of floats with text embeddings for texts. metadatas: Optional list of metadata associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ ids = [uuid.uuid4().hex for _ in texts] values_dict: Dict[str, List[Any]] = {self.content_field: texts, self. doc_id_field: ids} if not metadatas: metadatas = [] len_diff = len(ids) - len(metadatas) add_meta = [None for _ in range(0, len_diff)] metadatas = [(m if m is not None else {}) for m in metadatas + add_meta] values_dict[self.metadata_field] = metadatas values_dict[self.text_embedding_field] = embs self._persist(values_dict) return ids
def add_texts_with_embeddings(self, texts: List[str], embs: List[List[float ]], metadatas: Optional[List[dict]]=None, **kwargs: Any) ->List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: List of strings to add to the vectorstore. embs: List of lists of floats with text embeddings for texts. metadatas: Optional list of metadata associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ ids = [uuid.uuid4().hex for _ in texts] values_dict: Dict[str, List[Any]] = {self.content_field: texts, self. doc_id_field: ids} if not metadatas: metadatas = [] len_diff = len(ids) - len(metadatas) add_meta = [None for _ in range(0, len_diff)] metadatas = [(m if m is not None else {}) for m in metadatas + add_meta] values_dict[self.metadata_field] = metadatas values_dict[self.text_embedding_field] = embs self._persist(values_dict) return ids
Run more texts through the embeddings and add to the vectorstore. Args: texts: List of strings to add to the vectorstore. embs: List of lists of floats with text embeddings for texts. metadatas: Optional list of metadata associated with the texts. Returns: List of ids from adding the texts into the vectorstore.
_identifying_params
return {}
@property def _identifying_params(self) ->Dict[str, Any]: return {}
null
similarity_search_by_vector
result = self.similarity_search_by_vector_with_relevance_scores(embedding, k=k, filter=filter, **kwargs) documents = [doc for doc, _ in result] return documents
def similarity_search_by_vector(self, embedding: List[float], k: int=4, filter: Optional[Dict[str, Any]]=None, **kwargs: Any) ->List[Document]: result = self.similarity_search_by_vector_with_relevance_scores(embedding, k=k, filter=filter, **kwargs) documents = [doc for doc, _ in result] return documents
null
check_if_answer_reached
if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped else: return self.last_tokens == self.answer_prefix_tokens
def check_if_answer_reached(self) ->bool: if self.strip_tokens: return self.last_tokens_stripped == self.answer_prefix_tokens_stripped else: return self.last_tokens == self.answer_prefix_tokens
null
_run
try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name='source_path', value= source_path) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name='destination_path', value= destination_path) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return ( f'File copied successfully from {source_path} to {destination_path}.') except Exception as e: return 'Error: ' + str(e)
def _run(self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun]=None) ->str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name='source_path', value= source_path) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name='destination_path', value=destination_path) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return ( f'File copied successfully from {source_path} to {destination_path}.' ) except Exception as e: return 'Error: ' + str(e)
null
__init__
""" Args: file_path: The path to the Microsoft Excel file. mode: The mode to use when partitioning the file. See unstructured docs for more info. Optional. Defaults to "single". **unstructured_kwargs: Keyword arguments to pass to unstructured. """ validate_unstructured_version(min_unstructured_version='0.6.7') super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
def __init__(self, file_path: str, mode: str='single', ** unstructured_kwargs: Any): """ Args: file_path: The path to the Microsoft Excel file. mode: The mode to use when partitioning the file. See unstructured docs for more info. Optional. Defaults to "single". **unstructured_kwargs: Keyword arguments to pass to unstructured. """ validate_unstructured_version(min_unstructured_version='0.6.7') super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)
Args: file_path: The path to the Microsoft Excel file. mode: The mode to use when partitioning the file. See unstructured docs for more info. Optional. Defaults to "single". **unstructured_kwargs: Keyword arguments to pass to unstructured.
_import_graphql_tool
from langchain_community.tools.graphql.tool import BaseGraphQLTool return BaseGraphQLTool
def _import_graphql_tool() ->Any: from langchain_community.tools.graphql.tool import BaseGraphQLTool return BaseGraphQLTool
null
_build_query_sql
q_emb_str = ','.join(map(str, q_emb)) if where_str: where_str = f'PREWHERE {where_str}' else: where_str = '' settings_strs = [] if self.config.index_query_params: for k in self.config.index_query_params: settings_strs.append(f'SETTING {k}={self.config.index_query_params[k]}' ) q_str = f""" SELECT {self.config.column_map['document']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} {' '.join(settings_strs)} """ return q_str
def _build_query_sql(self, q_emb: List[float], topk: int, where_str: Optional[str]=None) ->str: q_emb_str = ','.join(map(str, q_emb)) if where_str: where_str = f'PREWHERE {where_str}' else: where_str = '' settings_strs = [] if self.config.index_query_params: for k in self.config.index_query_params: settings_strs.append( f'SETTING {k}={self.config.index_query_params[k]}') q_str = f""" SELECT {self.config.column_map['document']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} {' '.join(settings_strs)} """ return q_str
null
test_similarity_search_with_approx_infer_instack
"""test end to end with approx retrieval strategy and inference in-stack""" docsearch = ElasticsearchStore(index_name=index_name, strategy= ElasticsearchStore.ApproxRetrievalStrategy(query_model_id= 'sentence-transformers__all-minilm-l6-v2'), query_field='text_field', vector_query_field='vector_query_field.predicted_value', ** elasticsearch_connection) docsearch.client.ingest.put_pipeline(id='test_pipeline', processors=[{ 'inference': {'model_id': 'sentence-transformers__all-minilm-l6-v2', 'field_map': {'query_field': 'text_field'}, 'target_field': 'vector_query_field'}}]) docsearch.client.indices.create(index=index_name, mappings={'properties': { 'text_field': {'type': 'text'}, 'vector_query_field': {'properties': { 'predicted_value': {'type': 'dense_vector', 'dims': 384, 'index': True, 'similarity': 'l2_norm'}}}}}, settings={'index': {'default_pipeline': 'test_pipeline'}}) texts = ['foo', 'bar', 'baz'] for i, text in enumerate(texts): docsearch.client.create(index=index_name, id=str(i), document={ 'text_field': text, 'metadata': {}}) docsearch.client.indices.refresh(index=index_name) def assert_query(query_body: dict, query: str) ->dict: assert query_body == {'knn': {'filter': [], 'field': 'vector_query_field.predicted_value', 'k': 1, 'num_candidates': 50, 'query_vector_builder': {'text_embedding': {'model_id': 'sentence-transformers__all-minilm-l6-v2', 'model_text': 'foo'}}}} return query_body output = docsearch.similarity_search('foo', k=1, custom_query=assert_query) assert output == [Document(page_content='foo')] output = docsearch.similarity_search('bar', k=1) assert output == [Document(page_content='bar')]
@pytest.mark.skipif('sentence-transformers__all-minilm-l6-v2' not in modelsDeployed, reason= 'Sentence Transformers model not deployed in ML Node, skipping test') def test_similarity_search_with_approx_infer_instack(self, elasticsearch_connection: dict, index_name: str) ->None: """test end to end with approx retrieval strategy and inference in-stack""" docsearch = ElasticsearchStore(index_name=index_name, strategy= ElasticsearchStore.ApproxRetrievalStrategy(query_model_id= 'sentence-transformers__all-minilm-l6-v2'), query_field= 'text_field', vector_query_field= 'vector_query_field.predicted_value', **elasticsearch_connection) docsearch.client.ingest.put_pipeline(id='test_pipeline', processors=[{ 'inference': {'model_id': 'sentence-transformers__all-minilm-l6-v2', 'field_map': {'query_field': 'text_field'}, 'target_field': 'vector_query_field'}}]) docsearch.client.indices.create(index=index_name, mappings={ 'properties': {'text_field': {'type': 'text'}, 'vector_query_field': {'properties': {'predicted_value': {'type': 'dense_vector', 'dims': 384, 'index': True, 'similarity': 'l2_norm'}}}}}, settings={'index': {'default_pipeline': 'test_pipeline'}}) texts = ['foo', 'bar', 'baz'] for i, text in enumerate(texts): docsearch.client.create(index=index_name, id=str(i), document={ 'text_field': text, 'metadata': {}}) docsearch.client.indices.refresh(index=index_name) def assert_query(query_body: dict, query: str) ->dict: assert query_body == {'knn': {'filter': [], 'field': 'vector_query_field.predicted_value', 'k': 1, 'num_candidates': 50, 'query_vector_builder': {'text_embedding': {'model_id': 'sentence-transformers__all-minilm-l6-v2', 'model_text': 'foo'}}}} return query_body output = docsearch.similarity_search('foo', k=1, custom_query=assert_query) assert output == [Document(page_content='foo')] output = docsearch.similarity_search('bar', k=1) assert output == [Document(page_content='bar')]
test end to end with approx retrieval strategy and inference in-stack
extract_between_tags
ext_list = re.findall(f'<{tag}\\s?>(.+?)</{tag}\\s?>', string, re.DOTALL) if strip: ext_list = [e.strip() for e in ext_list] if ext_list: if len(ext_list) != 1: raise ValueError return ext_list[0]
def extract_between_tags(tag: str, string: str, strip: bool=True) ->str: ext_list = re.findall(f'<{tag}\\s?>(.+?)</{tag}\\s?>', string, re.DOTALL) if strip: ext_list = [e.strip() for e in ext_list] if ext_list: if len(ext_list) != 1: raise ValueError return ext_list[0]
null
test_all_imports
assert set(__all__) == set(EXPECTED_ALL)
def test_all_imports() ->None: assert set(__all__) == set(EXPECTED_ALL)
null
requires_reference
"""Returns whether the evaluator requires reference.""" return True
@property def requires_reference(self) ->bool: """Returns whether the evaluator requires reference.""" return True
Returns whether the evaluator requires reference.
_get_summary
try: response = self.client.get_propertygraph_summary() except Exception as e: raise NeptuneQueryException({'message': 'Summary API is not available for this instance of Neptune,ensure the engine version is >=1.2.1.0' , 'details': str(e)}) try: summary = response['payload']['graphSummary'] except Exception: raise NeptuneQueryException({'message': 'Summary API did not return a valid response.', 'details': response .content.decode()}) else: return summary
def _get_summary(self) ->Dict: try: response = self.client.get_propertygraph_summary() except Exception as e: raise NeptuneQueryException({'message': 'Summary API is not available for this instance of Neptune,ensure the engine version is >=1.2.1.0' , 'details': str(e)}) try: summary = response['payload']['graphSummary'] except Exception: raise NeptuneQueryException({'message': 'Summary API did not return a valid response.', 'details': response.content.decode()}) else: return summary
null
_get_elements
"""Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == 'innerText': val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != '': result[attribute] = val if result: results.append(result) return results
def _get_elements(page: SyncPage, selector: str, attributes: Sequence[str] ) ->List[dict]: """Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == 'innerText': val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != '': result[attribute] = val if result: results.append(result) return results
Get elements matching the given CSS selector.
synthetic_data_generator
return create_openai_data_generator(output_schema=MedicalBilling, llm= ChatOpenAI(temperature=1), prompt=prompt_template)
@pytest.fixture(scope='function') def synthetic_data_generator() ->SyntheticDataGenerator: return create_openai_data_generator(output_schema=MedicalBilling, llm= ChatOpenAI(temperature=1), prompt=prompt_template)
null
get_template_variables
"""Get the variables from the template. Args: template: The template string. template_format: The template format. Should be one of "f-string" or "jinja2". Returns: The variables from the template. Raises: ValueError: If the template format is not supported. """ if template_format == 'jinja2': input_variables = _get_jinja2_variables_from_template(template) elif template_format == 'f-string': input_variables = {v for _, v, _, _ in Formatter().parse(template) if v is not None} else: raise ValueError(f'Unsupported template format: {template_format}') return sorted(input_variables)
def get_template_variables(template: str, template_format: str) ->List[str]: """Get the variables from the template. Args: template: The template string. template_format: The template format. Should be one of "f-string" or "jinja2". Returns: The variables from the template. Raises: ValueError: If the template format is not supported. """ if template_format == 'jinja2': input_variables = _get_jinja2_variables_from_template(template) elif template_format == 'f-string': input_variables = {v for _, v, _, _ in Formatter().parse(template) if v is not None} else: raise ValueError(f'Unsupported template format: {template_format}') return sorted(input_variables)
Get the variables from the template. Args: template: The template string. template_format: The template format. Should be one of "f-string" or "jinja2". Returns: The variables from the template. Raises: ValueError: If the template format is not supported.
input_keys
"""Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {'agent_scratchpad'})
@property def input_keys(self) ->List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {'agent_scratchpad'})
Return the input keys. :meta private:
return_node_list
""" Returns the nodes as a list of Node objects. Each Node object will have its ID, type, and properties populated. Returns: List[Node]: A list of Node objects. """ nodes = [Node(id=key[0], type=key[1], properties=self.nodes[key]) for key in self.nodes] return nodes
def return_node_list(self) ->List[Node]: """ Returns the nodes as a list of Node objects. Each Node object will have its ID, type, and properties populated. Returns: List[Node]: A list of Node objects. """ nodes = [Node(id=key[0], type=key[1], properties=self.nodes[key]) for key in self.nodes] return nodes
Returns the nodes as a list of Node objects. Each Node object will have its ID, type, and properties populated. Returns: List[Node]: A list of Node objects.
roundtrip
"""Parse a file and pretty-print it to output. The output is formatted as valid Python source code. Args: filename: The name of the file to parse. output: The output stream to write to. """ with open(filename, 'rb') as pyfile: encoding = tokenize.detect_encoding(pyfile.readline)[0] with open(filename, 'r', encoding=encoding) as pyfile: source = pyfile.read() tree = compile(source, filename, 'exec', ast.PyCF_ONLY_AST) Unparser(tree, output)
def roundtrip(filename, output=sys.stdout): """Parse a file and pretty-print it to output. The output is formatted as valid Python source code. Args: filename: The name of the file to parse. output: The output stream to write to. """ with open(filename, 'rb') as pyfile: encoding = tokenize.detect_encoding(pyfile.readline)[0] with open(filename, 'r', encoding=encoding) as pyfile: source = pyfile.read() tree = compile(source, filename, 'exec', ast.PyCF_ONLY_AST) Unparser(tree, output)
Parse a file and pretty-print it to output. The output is formatted as valid Python source code. Args: filename: The name of the file to parse. output: The output stream to write to.
persist
"""Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( 'You must specify a persist_directory oncreation to persist the collection.' ) import chromadb major, minor, _ = chromadb.__version__.split('.') if int(major) == 0 and int(minor) < 4: self._client.persist()
def persist(self) ->None: """Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed. """ if self._persist_directory is None: raise ValueError( 'You must specify a persist_directory oncreation to persist the collection.' ) import chromadb major, minor, _ = chromadb.__version__.split('.') if int(major) == 0 and int(minor) < 4: self._client.persist()
Persist the collection. This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed.
_completion_with_retry
return _make_request(llm, **_kwargs)
@retry_decorator def _completion_with_retry(**_kwargs: Any) ->Any: return _make_request(llm, **_kwargs)
null
get_lc_namespace
"""Get the namespace of the langchain object.""" return ['langchain', 'llms', 'openai']
@classmethod def get_lc_namespace(cls) ->List[str]: """Get the namespace of the langchain object.""" return ['langchain', 'llms', 'openai']
Get the namespace of the langchain object.
similarity_search
"""Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. any other querying variable in VectaraQueryConfig Returns: List of Documents most similar to the query """ docs_and_scores = self.similarity_search_with_score(query, **kwargs) return [doc for doc, _ in docs_and_scores]
def similarity_search(self, query: str, **kwargs: Any) ->List[Document]: """Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. any other querying variable in VectaraQueryConfig Returns: List of Documents most similar to the query """ docs_and_scores = self.similarity_search_with_score(query, **kwargs) return [doc for doc, _ in docs_and_scores]
Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. any other querying variable in VectaraQueryConfig Returns: List of Documents most similar to the query
mock_now
"""Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11) """ class MockDateTime(datetime.datetime): """Mock datetime.datetime.now() with a fixed datetime.""" @classmethod def now(cls): return datetime.datetime(dt_value.year, dt_value.month, dt_value. day, dt_value.hour, dt_value.minute, dt_value.second, dt_value. microsecond, dt_value.tzinfo) real_datetime = datetime.datetime datetime.datetime = MockDateTime try: yield datetime.datetime finally: datetime.datetime = real_datetime
@contextlib.contextmanager def mock_now(dt_value): """Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11) """ class MockDateTime(datetime.datetime): """Mock datetime.datetime.now() with a fixed datetime.""" @classmethod def now(cls): return datetime.datetime(dt_value.year, dt_value.month, dt_value.day, dt_value.hour, dt_value.minute, dt_value. second, dt_value.microsecond, dt_value.tzinfo) real_datetime = datetime.datetime datetime.datetime = MockDateTime try: yield datetime.datetime finally: datetime.datetime = real_datetime
Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11)
inputs
return self._inputs
@property def inputs(self) ->Dict[str, str]: return self._inputs
null
_ddgs_text
"""Run query through DuckDuckGo text search and return results.""" from duckduckgo_search import DDGS with DDGS() as ddgs: ddgs_gen = ddgs.text(query, region=self.region, safesearch=self. safesearch, timelimit=self.time, max_results=max_results or self. max_results, backend=self.backend) if ddgs_gen: return [r for r in ddgs_gen] return []
def _ddgs_text(self, query: str, max_results: Optional[int]=None) ->List[Dict [str, str]]: """Run query through DuckDuckGo text search and return results.""" from duckduckgo_search import DDGS with DDGS() as ddgs: ddgs_gen = ddgs.text(query, region=self.region, safesearch=self. safesearch, timelimit=self.time, max_results=max_results or self.max_results, backend=self.backend) if ddgs_gen: return [r for r in ddgs_gen] return []
Run query through DuckDuckGo text search and return results.
output_keys
_output_keys = [self.output_key] return _output_keys
@property def output_keys(self) ->List[str]: _output_keys = [self.output_key] return _output_keys
null
embed_documents
"""Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist()
def embed_documents(self, texts: List[str]) ->List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist()
Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text.
__init__
"""Create a new NebulaGraph wrapper instance.""" try: import nebula3 import pandas except ImportError: raise ValueError( 'Please install NebulaGraph Python client and pandas first: `pip install nebula3-python pandas`' ) self.username = username self.password = password self.address = address self.port = port self.space = space self.session_pool_size = session_pool_size self.session_pool = self._get_session_pool() self.schema = '' try: self.refresh_schema() except Exception as e: raise ValueError(f'Could not refresh schema. Error: {e}')
def __init__(self, space: str, username: str='root', password: str='nebula', address: str='127.0.0.1', port: int=9669, session_pool_size: int=30 ) ->None: """Create a new NebulaGraph wrapper instance.""" try: import nebula3 import pandas except ImportError: raise ValueError( 'Please install NebulaGraph Python client and pandas first: `pip install nebula3-python pandas`' ) self.username = username self.password = password self.address = address self.port = port self.space = space self.session_pool_size = session_pool_size self.session_pool = self._get_session_pool() self.schema = '' try: self.refresh_schema() except Exception as e: raise ValueError(f'Could not refresh schema. Error: {e}')
Create a new NebulaGraph wrapper instance.
uppercase_strings
return v.upper()
@validator('algorithm', 'datatype', 'distance_metric', pre=True, each_item=True ) def uppercase_strings(cls, v: str) ->str: return v.upper()
null
test_sim_search_by_vector
"""Test end to end construction and similarity search by vector.""" in_memory_vec_store = DocArrayInMemorySearch.from_texts(texts=texts, embedding=FakeEmbeddings(), metric=metric) embedding = [1.0] * 10 output = in_memory_vec_store.similarity_search_by_vector(embedding, k=1) assert output == [Document(page_content='bar')]
@pytest.mark.parametrize('metric', ['cosine_sim', 'euclidean_dist', 'sqeuclidean_dist']) def test_sim_search_by_vector(metric: str, texts: List[str]) ->None: """Test end to end construction and similarity search by vector.""" in_memory_vec_store = DocArrayInMemorySearch.from_texts(texts=texts, embedding=FakeEmbeddings(), metric=metric) embedding = [1.0] * 10 output = in_memory_vec_store.similarity_search_by_vector(embedding, k=1) assert output == [Document(page_content='bar')]
Test end to end construction and similarity search by vector.
add_prompts_generations
tasks = [] prompts = self.payload[run_id]['prompts'] model_version = self.payload[run_id]['kwargs'].get('invocation_params', {} ).get('model_name') for prompt, generation in zip(prompts, generations): tasks.append({'data': {self.value: prompt, 'run_id': run_id}, 'predictions': [{'result': [{'from_name': self.from_name, 'to_name': self.to_name, 'type': 'textarea', 'value': {'text': [g.text for g in generation]}}], 'model_version': model_version}]}) self.ls_project.import_tasks(tasks)
def add_prompts_generations(self, run_id: str, generations: List[List[ Generation]]) ->None: tasks = [] prompts = self.payload[run_id]['prompts'] model_version = self.payload[run_id]['kwargs'].get('invocation_params', {} ).get('model_name') for prompt, generation in zip(prompts, generations): tasks.append({'data': {self.value: prompt, 'run_id': run_id}, 'predictions': [{'result': [{'from_name': self.from_name, 'to_name': self.to_name, 'type': 'textarea', 'value': {'text': [g.text for g in generation]}}], 'model_version': model_version}]}) self.ls_project.import_tasks(tasks)
null
_get_length_based
return len(re.split('\n| ', text))
def _get_length_based(text: str) ->int: return len(re.split('\n| ', text))
null
get_lc_namespace
"""Get the namespace of the langchain object.""" return ['langchain', 'schema', 'runnable']
@classmethod def get_lc_namespace(cls) ->List[str]: """Get the namespace of the langchain object.""" return ['langchain', 'schema', 'runnable']
Get the namespace of the langchain object.
arcgis_mocks
sys_modules = {'arcgis': MagicMock(), 'arcgis.features.FeatureLayer': mock_feature_layer, 'arcgis.gis.GIS': mock_gis} with patch.dict('sys.modules', sys_modules): yield
@pytest.fixture def arcgis_mocks(mock_feature_layer, mock_gis): sys_modules = {'arcgis': MagicMock(), 'arcgis.features.FeatureLayer': mock_feature_layer, 'arcgis.gis.GIS': mock_gis} with patch.dict('sys.modules', sys_modules): yield
null
format
"""Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ text = self.prompt.format(**kwargs) return ChatMessage(content=text, role=self.role, additional_kwargs=self. additional_kwargs)
def format(self, **kwargs: Any) ->BaseMessage: """Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ text = self.prompt.format(**kwargs) return ChatMessage(content=text, role=self.role, additional_kwargs=self .additional_kwargs)
Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message.
test_structured_args
"""Test functionality with structured arguments.""" structured_api = _MockStructuredTool() assert isinstance(structured_api, BaseTool) assert structured_api.name == 'structured_api' expected_result = "1 True {'foo': 'bar'}" args = {'arg1': 1, 'arg2': True, 'arg3': {'foo': 'bar'}} assert structured_api.run(args) == expected_result
def test_structured_args() ->None: """Test functionality with structured arguments.""" structured_api = _MockStructuredTool() assert isinstance(structured_api, BaseTool) assert structured_api.name == 'structured_api' expected_result = "1 True {'foo': 'bar'}" args = {'arg1': 1, 'arg2': True, 'arg3': {'foo': 'bar'}} assert structured_api.run(args) == expected_result
Test functionality with structured arguments.
_log_conversation
"""Log the conversation to the context API.""" if len(self.messages) == 0: return self.client.log.conversation_upsert(body={'conversation': self. conversation_model(messages=self.messages, metadata=self.metadata)}) self.messages = [] self.metadata = {}
def _log_conversation(self) ->None: """Log the conversation to the context API.""" if len(self.messages) == 0: return self.client.log.conversation_upsert(body={'conversation': self. conversation_model(messages=self.messages, metadata=self.metadata)}) self.messages = [] self.metadata = {}
Log the conversation to the context API.
test_interfaces
history = ChatMessageHistory() history.add_message(SystemMessage(content='system')) history.add_user_message('human 1') history.add_ai_message('ai') history.add_message(HumanMessage(content='human 2')) assert str(history) == """System: system Human: human 1 AI: ai Human: human 2"""
def test_interfaces() ->None: history = ChatMessageHistory() history.add_message(SystemMessage(content='system')) history.add_user_message('human 1') history.add_ai_message('ai') history.add_message(HumanMessage(content='human 2')) assert str(history ) == 'System: system\nHuman: human 1\nAI: ai\nHuman: human 2'
null
validate_credentials_path
"""Validate that credentials_path exists.""" if not v.exists(): raise ValueError(f'credentials_path {v} does not exist') return v
@validator('credentials_path') def validate_credentials_path(cls, v: Any, **kwargs: Any) ->Any: """Validate that credentials_path exists.""" if not v.exists(): raise ValueError(f'credentials_path {v} does not exist') return v
Validate that credentials_path exists.
__del__
if self.cursor: self.cursor.close() if self.connection: self.connection.close()
def __del__(self) ->None: if self.cursor: self.cursor.close() if self.connection: self.connection.close()
null
OutputType
return T
@property def OutputType(self) ->Type[T]: return T
null
_type
"""Return the output parser type for serialization.""" raise NotImplementedError( f'_type property is not implemented in class {self.__class__.__name__}. This is required for serialization.' )
@property def _type(self) ->str: """Return the output parser type for serialization.""" raise NotImplementedError( f'_type property is not implemented in class {self.__class__.__name__}. This is required for serialization.' )
Return the output parser type for serialization.
test_tool_usage
parser = JSONAgentOutputParser() _input = """ ``` { "action": "search", "action_input": "2+2" } ```""" output = parser.invoke(_input) expected_output = AgentAction(tool='search', tool_input='2+2', log=_input) assert output == expected_output
def test_tool_usage() ->None: parser = JSONAgentOutputParser() _input = ( ' ```\n{\n "action": "search",\n "action_input": "2+2"\n}\n```') output = parser.invoke(_input) expected_output = AgentAction(tool='search', tool_input='2+2', log=_input) assert output == expected_output
null
_generate
lmformatenforcer = import_lmformatenforcer() import lmformatenforcer.integrations.transformers as hf_integration if 'prefix_allowed_tokens_fn' in self.pipeline._forward_params: raise ValueError( 'prefix_allowed_tokens_fn param is forbidden with LMFormatEnforcer.') has_json_schema = self.json_schema is not None has_regex = self.regex is not None if has_json_schema == has_regex: raise ValueError( 'You must specify exactly one of json_schema or a regex, but not both.' ) if has_json_schema: parser = lmformatenforcer.JsonSchemaParser(self.json_schema) else: parser = lmformatenforcer.RegexParser(self.regex) prefix_function = hf_integration.build_transformers_prefix_allowed_tokens_fn( self.pipeline.tokenizer, parser) self.pipeline._forward_params['prefix_allowed_tokens_fn'] = prefix_function result = super()._generate(prompts, stop=stop, run_manager=run_manager, ** kwargs) del self.pipeline._forward_params['prefix_allowed_tokens_fn'] return result
def _generate(self, prompts: List[str], stop: Optional[List[str]]=None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any ) ->LLMResult: lmformatenforcer = import_lmformatenforcer() import lmformatenforcer.integrations.transformers as hf_integration if 'prefix_allowed_tokens_fn' in self.pipeline._forward_params: raise ValueError( 'prefix_allowed_tokens_fn param is forbidden with LMFormatEnforcer.' ) has_json_schema = self.json_schema is not None has_regex = self.regex is not None if has_json_schema == has_regex: raise ValueError( 'You must specify exactly one of json_schema or a regex, but not both.' ) if has_json_schema: parser = lmformatenforcer.JsonSchemaParser(self.json_schema) else: parser = lmformatenforcer.RegexParser(self.regex) prefix_function = (hf_integration. build_transformers_prefix_allowed_tokens_fn(self.pipeline.tokenizer, parser)) self.pipeline._forward_params['prefix_allowed_tokens_fn'] = prefix_function result = super()._generate(prompts, stop=stop, run_manager=run_manager, **kwargs) del self.pipeline._forward_params['prefix_allowed_tokens_fn'] return result
null
from_texts
""" Return Neo4jVector initialized from texts and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from(texts, embeddings, embedding, metadatas=metadatas, ids= ids, distance_strategy=distance_strategy, **kwargs)
@classmethod def from_texts(cls: Type[Neo4jVector], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]]=None, distance_strategy: DistanceStrategy=DEFAULT_DISTANCE_STRATEGY, ids: Optional[List[str]]= None, **kwargs: Any) ->Neo4jVector: """ Return Neo4jVector initialized from texts and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters. """ embeddings = embedding.embed_documents(list(texts)) return cls.__from(texts, embeddings, embedding, metadatas=metadatas, ids=ids, distance_strategy=distance_strategy, **kwargs)
Return Neo4jVector initialized from texts and embeddings. Neo4j credentials are required in the form of `url`, `username`, and `password` and optional `database` parameters.
disable_ssl_warnings
"""Disable SSL warnings.""" if v: try: import urllib3 urllib3.disable_warnings() except ImportError as e: print(e) return v
@validator('unsecure') def disable_ssl_warnings(cls, v: bool) ->bool: """Disable SSL warnings.""" if v: try: import urllib3 urllib3.disable_warnings() except ImportError as e: print(e) return v
Disable SSL warnings.
_import_office365_create_draft_message
from langchain_community.tools.office365.create_draft_message import O365CreateDraftMessage return O365CreateDraftMessage
def _import_office365_create_draft_message() ->Any: from langchain_community.tools.office365.create_draft_message import O365CreateDraftMessage return O365CreateDraftMessage
null
drop_tables
self.sync_client.drop_table()
def drop_tables(self) ->None: self.sync_client.drop_table()
null
web_search
results = ddg_search.results(query, num_results) return [r['link'] for r in results]
def web_search(query: str, num_results: int): results = ddg_search.results(query, num_results) return [r['link'] for r in results]
null
similarity_search
"""Perform a similarity search with StarRocks Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector(self.embedding_function.embed_query (query), k, where_str, **kwargs)
def similarity_search(self, query: str, k: int=4, where_str: Optional[str]= None, **kwargs: Any) ->List[Document]: """Perform a similarity search with StarRocks Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector(self.embedding_function. embed_query(query), k, where_str, **kwargs)
Perform a similarity search with StarRocks Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents
from_documents
texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs['connection_string'] = connection_string return cls.from_texts(texts=texts, pre_delete_collection= pre_delete_collection, embedding=embedding, metadatas=metadatas, ids= ids, collection_name=collection_name, **kwargs)
@classmethod def from_documents(cls: Type[PGEmbedding], documents: List[Document], embedding: Embeddings, collection_name: str= _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]]=None, pre_delete_collection: bool=False, **kwargs: Any) ->PGEmbedding: texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs['connection_string'] = connection_string return cls.from_texts(texts=texts, pre_delete_collection= pre_delete_collection, embedding=embedding, metadatas=metadatas, ids=ids, collection_name=collection_name, **kwargs)
null
bulk_similarity_search_with_score
"""Return documents from Marqo that are similar to the query as well as their scores using a batch of queries. Args: query (Iterable[Union[str, Dict[str, float]]]): An iterable of queries to execute in bulk, queries in the list can be strings or dictionaries of weighted queries. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Tuple[Document, float]]: A list of lists of the matching documents and their scores for each query """ bulk_results = self.marqo_bulk_similarity_search(queries=queries, k=k) bulk_documents: List[List[Tuple[Document, float]]] = [] for results in bulk_results['result']: documents = self._construct_documents_from_results_with_score(results) bulk_documents.append(documents) return bulk_documents
def bulk_similarity_search_with_score(self, queries: Iterable[Union[str, Dict[str, float]]], k: int=4, **kwargs: Any) ->List[List[Tuple[Document, float]]]: """Return documents from Marqo that are similar to the query as well as their scores using a batch of queries. Args: query (Iterable[Union[str, Dict[str, float]]]): An iterable of queries to execute in bulk, queries in the list can be strings or dictionaries of weighted queries. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Tuple[Document, float]]: A list of lists of the matching documents and their scores for each query """ bulk_results = self.marqo_bulk_similarity_search(queries=queries, k=k) bulk_documents: List[List[Tuple[Document, float]]] = [] for results in bulk_results['result']: documents = self._construct_documents_from_results_with_score(results) bulk_documents.append(documents) return bulk_documents
Return documents from Marqo that are similar to the query as well as their scores using a batch of queries. Args: query (Iterable[Union[str, Dict[str, float]]]): An iterable of queries to execute in bulk, queries in the list can be strings or dictionaries of weighted queries. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Tuple[Document, float]]: A list of lists of the matching documents and their scores for each query
requires_input
return True
@property def requires_input(self) ->bool: return True
null
test_list_directory
"""Test the DirectoryListing tool.""" with TemporaryDirectory() as temp_dir: tool = ListDirectoryTool() file_1 = Path(temp_dir) / 'file1.txt' file_2 = Path(temp_dir) / 'file2.txt' file_1.write_text('File 1 content') file_2.write_text('File 2 content') entries = tool.run({'dir_path': temp_dir}).split('\n') assert set(entries) == {'file1.txt', 'file2.txt'}
def test_list_directory() ->None: """Test the DirectoryListing tool.""" with TemporaryDirectory() as temp_dir: tool = ListDirectoryTool() file_1 = Path(temp_dir) / 'file1.txt' file_2 = Path(temp_dir) / 'file2.txt' file_1.write_text('File 1 content') file_2.write_text('File 2 content') entries = tool.run({'dir_path': temp_dir}).split('\n') assert set(entries) == {'file1.txt', 'file2.txt'}
Test the DirectoryListing tool.
_generate
"""Run the LLM on the given prompt and input.""" from vllm import SamplingParams params = {**self._default_params, **kwargs, 'stop': stop} sampling_params = SamplingParams(**params) outputs = self.client.generate(prompts, sampling_params) generations = [] for output in outputs: text = output.outputs[0].text generations.append([Generation(text=text)]) return LLMResult(generations=generations)
def _generate(self, prompts: List[str], stop: Optional[List[str]]=None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any ) ->LLMResult: """Run the LLM on the given prompt and input.""" from vllm import SamplingParams params = {**self._default_params, **kwargs, 'stop': stop} sampling_params = SamplingParams(**params) outputs = self.client.generate(prompts, sampling_params) generations = [] for output in outputs: text = output.outputs[0].text generations.append([Generation(text=text)]) return LLMResult(generations=generations)
Run the LLM on the given prompt and input.
__delete__
if instance is not None: emit_warning() return super().__delete__(instance)
def __delete__(self, instance): if instance is not None: emit_warning() return super().__delete__(instance)
null
test_all_imports
assert set(__all__) == set(EXPECTED_ALL)
def test_all_imports() ->None: assert set(__all__) == set(EXPECTED_ALL)
null
__init__
self.dimension = dimension self.shard = shard self.replicas = replicas self.index_type = index_type self.metric_type = metric_type self.params = params
def __init__(self, dimension: int, shard: int=1, replicas: int=2, index_type: str='HNSW', metric_type: str='L2', params: Optional[Dict]=None ): self.dimension = dimension self.shard = shard self.replicas = replicas self.index_type = index_type self.metric_type = metric_type self.params = params
null
test_on_llm_end_no_cost_invalid_model
response = LLMResult(generations=[], llm_output={'token_usage': { 'prompt_tokens': 1000, 'completion_tokens': 1000, 'total_tokens': 2000}, 'model_name': model_name}) handler.on_llm_end(response) assert handler.total_cost == 0
@pytest.mark.parametrize('model_name', ['gpt-35-turbo-16k-0301', 'gpt-4-0301', 'gpt-4-32k-0301']) def test_on_llm_end_no_cost_invalid_model(handler: OpenAICallbackHandler, model_name: str) ->None: response = LLMResult(generations=[], llm_output={'token_usage': { 'prompt_tokens': 1000, 'completion_tokens': 1000, 'total_tokens': 2000}, 'model_name': model_name}) handler.on_llm_end(response) assert handler.total_cost == 0
null
test___module_name___embedding_documents
"""Test cohere embeddings.""" documents = ['foo bar'] embedding = __ModuleName__Embeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) > 0
def test___module_name___embedding_documents() ->None: """Test cohere embeddings.""" documents = ['foo bar'] embedding = __ModuleName__Embeddings() output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) > 0
Test cohere embeddings.
marqo_similarity_search
"""Return documents from Marqo exposing Marqo's output directly Args: query (str): The query to search with. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Dict[str, Any]]: This hits from marqo. """ results = self._client.index(self._index_name).search(q=query, searchable_attributes=self._searchable_attributes, limit=k) return results
def marqo_similarity_search(self, query: Union[str, Dict[str, float]], k: int=4 ) ->Dict[str, List[Dict[str, str]]]: """Return documents from Marqo exposing Marqo's output directly Args: query (str): The query to search with. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Dict[str, Any]]: This hits from marqo. """ results = self._client.index(self._index_name).search(q=query, searchable_attributes=self._searchable_attributes, limit=k) return results
Return documents from Marqo exposing Marqo's output directly Args: query (str): The query to search with. k (int, optional): The number of documents to return. Defaults to 4. Returns: List[Dict[str, Any]]: This hits from marqo.
test_vertex_initialization
llm = VertexAI(model_name=model_name) if model_name else VertexAI() assert llm._llm_type == 'vertexai' try: assert llm.model_name == llm.client._model_id except AttributeError: assert llm.model_name == llm.client._model_name.split('/')[-1]
@pytest.mark.parametrize('model_name', model_names_to_test_with_default) def test_vertex_initialization(model_name: str) ->None: llm = VertexAI(model_name=model_name) if model_name else VertexAI() assert llm._llm_type == 'vertexai' try: assert llm.model_name == llm.client._model_id except AttributeError: assert llm.model_name == llm.client._model_name.split('/')[-1]
null
_import_awslambda
from langchain_community.utilities.awslambda import LambdaWrapper return LambdaWrapper
def _import_awslambda() ->Any: from langchain_community.utilities.awslambda import LambdaWrapper return LambdaWrapper
null
_make_session
"""Create a session and close it after use.""" if isinstance(self.session_factory, async_sessionmaker): raise AssertionError('This method is not supported for async engines.') session = self.session_factory() try: yield session finally: session.close()
@contextlib.contextmanager def _make_session(self) ->Generator[Session, None, None]: """Create a session and close it after use.""" if isinstance(self.session_factory, async_sessionmaker): raise AssertionError('This method is not supported for async engines.') session = self.session_factory() try: yield session finally: session.close()
Create a session and close it after use.
validate_environment
if isinstance(values.get('model'), str): values['model'] = _model_default_factory(model_name=values['model']) return values
@root_validator(pre=True) def validate_environment(cls, values: dict) ->dict: if isinstance(values.get('model'), str): values['model'] = _model_default_factory(model_name=values['model']) return values
null
__init__
"""Initialize the BibtexLoader. Args: file_path: Path to the bibtex file. parser: The parser to use. If None, a default parser is used. max_docs: Max number of associated documents to load. Use -1 means no limit. max_content_chars: Maximum number of characters to load from the PDF. load_extra_metadata: Whether to load extra metadata from the PDF. file_pattern: Regex pattern to match the file name in the bibtex. """ self.file_path = file_path self.parser = parser or BibtexparserWrapper() self.max_docs = max_docs self.max_content_chars = max_content_chars self.load_extra_metadata = load_extra_metadata self.file_regex = re.compile(file_pattern)
def __init__(self, file_path: str, *, parser: Optional[BibtexparserWrapper] =None, max_docs: Optional[int]=None, max_content_chars: Optional[int]= 4000, load_extra_metadata: bool=False, file_pattern: str='[^:]+\\.pdf'): """Initialize the BibtexLoader. Args: file_path: Path to the bibtex file. parser: The parser to use. If None, a default parser is used. max_docs: Max number of associated documents to load. Use -1 means no limit. max_content_chars: Maximum number of characters to load from the PDF. load_extra_metadata: Whether to load extra metadata from the PDF. file_pattern: Regex pattern to match the file name in the bibtex. """ self.file_path = file_path self.parser = parser or BibtexparserWrapper() self.max_docs = max_docs self.max_content_chars = max_content_chars self.load_extra_metadata = load_extra_metadata self.file_regex = re.compile(file_pattern)
Initialize the BibtexLoader. Args: file_path: Path to the bibtex file. parser: The parser to use. If None, a default parser is used. max_docs: Max number of associated documents to load. Use -1 means no limit. max_content_chars: Maximum number of characters to load from the PDF. load_extra_metadata: Whether to load extra metadata from the PDF. file_pattern: Regex pattern to match the file name in the bibtex.
_generate_with_retry
resp = llm.client.call(**_kwargs) return check_response(resp)
@retry_decorator def _generate_with_retry(**_kwargs: Any) ->Any: resp = llm.client.call(**_kwargs) return check_response(resp)
null
artifact
"""To upload the file from given path as artifact.""" with self.mlflow.start_run(run_id=self.run.info.run_id, experiment_id=self. mlf_expid): self.mlflow.log_artifact(path)
def artifact(self, path: str) ->None: """To upload the file from given path as artifact.""" with self.mlflow.start_run(run_id=self.run.info.run_id, experiment_id= self.mlf_expid): self.mlflow.log_artifact(path)
To upload the file from given path as artifact.
_make_request_url
return f'{self.arcee_api_url}/{self.arcee_api_version}/{route}'
def _make_request_url(self, route: Union[ArceeRoute, str]) ->str: return f'{self.arcee_api_url}/{self.arcee_api_version}/{route}'
null
from_pydantic
try: from guardrails import Guard except ImportError: raise ImportError( 'guardrails-ai package not installed. Install it by running `pip install guardrails-ai`.' ) return cls(guard=Guard.from_pydantic(output_class, '', num_reasks= num_reasks), api=api, args=args, kwargs=kwargs)
@classmethod def from_pydantic(cls, output_class: Any, num_reasks: int=1, api: Optional[ Callable]=None, *args: Any, **kwargs: Any) ->GuardrailsOutputParser: try: from guardrails import Guard except ImportError: raise ImportError( 'guardrails-ai package not installed. Install it by running `pip install guardrails-ai`.' ) return cls(guard=Guard.from_pydantic(output_class, '', num_reasks= num_reasks), api=api, args=args, kwargs=kwargs)
null
__init__
"""Initialize callback handler.""" flytekit, renderer = import_flytekit() self.pandas = import_pandas() self.textstat = None try: self.textstat = import_textstat() except ImportError: logger.warning( 'Textstat library is not installed. It may result in the inability to log certain metrics that can be captured with Textstat.' ) spacy = None try: spacy = import_spacy() except ImportError: logger.warning( 'Spacy library is not installed. It may result in the inability to log certain metrics that can be captured with Spacy.' ) super().__init__() self.nlp = None if spacy: try: self.nlp = spacy.load('en_core_web_sm') except OSError: logger.warning( "FlyteCallbackHandler uses spacy's en_core_web_sm model for certain metrics. To download, run the following command in your terminal: `python -m spacy download en_core_web_sm`" ) self.table_renderer = renderer.TableRenderer self.markdown_renderer = renderer.MarkdownRenderer self.deck = flytekit.Deck('LangChain Metrics', self.markdown_renderer(). to_html('## LangChain Metrics'))
def __init__(self) ->None: """Initialize callback handler.""" flytekit, renderer = import_flytekit() self.pandas = import_pandas() self.textstat = None try: self.textstat = import_textstat() except ImportError: logger.warning( 'Textstat library is not installed. It may result in the inability to log certain metrics that can be captured with Textstat.' ) spacy = None try: spacy = import_spacy() except ImportError: logger.warning( 'Spacy library is not installed. It may result in the inability to log certain metrics that can be captured with Spacy.' ) super().__init__() self.nlp = None if spacy: try: self.nlp = spacy.load('en_core_web_sm') except OSError: logger.warning( "FlyteCallbackHandler uses spacy's en_core_web_sm model for certain metrics. To download, run the following command in your terminal: `python -m spacy download en_core_web_sm`" ) self.table_renderer = renderer.TableRenderer self.markdown_renderer = renderer.MarkdownRenderer self.deck = flytekit.Deck('LangChain Metrics', self.markdown_renderer() .to_html('## LangChain Metrics'))
Initialize callback handler.
_agent_type
raise ValueError
@property def _agent_type(self) ->str: raise ValueError
null
card_list_to_objects
"""Helper to convert dict cards into trello weird mix of objects and dictionaries""" for card in cards: card['checklists'] = list_to_objects(card.get('checklists')) card['labels'] = list_to_objects(card.get('labels')) return list_to_objects(cards)
def card_list_to_objects(cards: list) ->list: """Helper to convert dict cards into trello weird mix of objects and dictionaries""" for card in cards: card['checklists'] = list_to_objects(card.get('checklists')) card['labels'] = list_to_objects(card.get('labels')) return list_to_objects(cards)
Helper to convert dict cards into trello weird mix of objects and dictionaries
test_tencent_vector_db_add_extra
"""Test end to end construction and MRR search.""" texts = ['foo', 'bar', 'baz'] metadatas = [{'page': i} for i in range(len(texts))] docsearch = _tencent_vector_db_from_texts(metadatas=metadatas) docsearch.add_texts(texts, metadatas) time.sleep(3) output = docsearch.similarity_search('foo', k=10) assert len(output) == 6
def test_tencent_vector_db_add_extra() ->None: """Test end to end construction and MRR search.""" texts = ['foo', 'bar', 'baz'] metadatas = [{'page': i} for i in range(len(texts))] docsearch = _tencent_vector_db_from_texts(metadatas=metadatas) docsearch.add_texts(texts, metadatas) time.sleep(3) output = docsearch.similarity_search('foo', k=10) assert len(output) == 6
Test end to end construction and MRR search.
test_chat_ai_endpoints_system_message
"""Test wrapper with system message.""" chat = ChatNVIDIA(model='llama2_13b', max_tokens=36) system_message = SystemMessage(content='You are to chat with the user.') human_message = HumanMessage(content='Hello') response = chat([system_message, human_message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
def test_chat_ai_endpoints_system_message() ->None: """Test wrapper with system message.""" chat = ChatNVIDIA(model='llama2_13b', max_tokens=36) system_message = SystemMessage(content='You are to chat with the user.') human_message = HumanMessage(content='Hello') response = chat([system_message, human_message]) assert isinstance(response, BaseMessage) assert isinstance(response.content, str)
Test wrapper with system message.
_default_params
"""Get the default parameters for calling the API.""" defaults = {'model': self.model, 'temperature': self.temperature, 'max_tokens': self.max_tokens, 'top_p': self.top_p, 'random_seed': self .random_seed, 'safe_mode': self.safe_mode} filtered = {k: v for k, v in defaults.items() if v is not None} return filtered
@property def _default_params(self) ->Dict[str, Any]: """Get the default parameters for calling the API.""" defaults = {'model': self.model, 'temperature': self.temperature, 'max_tokens': self.max_tokens, 'top_p': self.top_p, 'random_seed': self.random_seed, 'safe_mode': self.safe_mode} filtered = {k: v for k, v in defaults.items() if v is not None} return filtered
Get the default parameters for calling the API.
from_template
"""Create a class from a string template. Args: template: a template. template_format: format of the template. partial_variables: A dictionary of variables that can be used to partially fill in the template. For example, if the template is `"{variable1} {variable2}"`, and `partial_variables` is `{"variable1": "foo"}`, then the final prompt will be `"foo {variable2}"`. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ prompt = PromptTemplate.from_template(template, template_format= template_format, partial_variables=partial_variables) return cls(prompt=prompt, **kwargs)
@classmethod def from_template(cls: Type[MessagePromptTemplateT], template: str, template_format: str='f-string', partial_variables: Optional[Dict[str, Any]]=None, **kwargs: Any) ->MessagePromptTemplateT: """Create a class from a string template. Args: template: a template. template_format: format of the template. partial_variables: A dictionary of variables that can be used to partially fill in the template. For example, if the template is `"{variable1} {variable2}"`, and `partial_variables` is `{"variable1": "foo"}`, then the final prompt will be `"foo {variable2}"`. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ prompt = PromptTemplate.from_template(template, template_format= template_format, partial_variables=partial_variables) return cls(prompt=prompt, **kwargs)
Create a class from a string template. Args: template: a template. template_format: format of the template. partial_variables: A dictionary of variables that can be used to partially fill in the template. For example, if the template is `"{variable1} {variable2}"`, and `partial_variables` is `{"variable1": "foo"}`, then the final prompt will be `"foo {variable2}"`. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class.
get_schema
return db.get_table_info()
def get_schema(_): return db.get_table_info()
null