add dataset loading scripts
Browse files- class_names.txt +199 -0
- food_vision_199_classes.py +71 -0
class_names.txt
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
almond_butter
|
2 |
+
almonds
|
3 |
+
apple
|
4 |
+
apricot
|
5 |
+
asparagus
|
6 |
+
avocado
|
7 |
+
bacon
|
8 |
+
bacon_and_egg_burger
|
9 |
+
bagel
|
10 |
+
baklava
|
11 |
+
banana
|
12 |
+
banana_bread
|
13 |
+
barbecue_sauce
|
14 |
+
beans
|
15 |
+
beef
|
16 |
+
beef_curry
|
17 |
+
beef_mince
|
18 |
+
beef_stir_fry
|
19 |
+
beer
|
20 |
+
beetroot
|
21 |
+
biltong
|
22 |
+
blackberries
|
23 |
+
blueberries
|
24 |
+
bok_choy
|
25 |
+
bread
|
26 |
+
broccoli
|
27 |
+
broccolini
|
28 |
+
brownie
|
29 |
+
brussel_sprouts
|
30 |
+
burrito
|
31 |
+
butter
|
32 |
+
cabbage
|
33 |
+
calamari
|
34 |
+
candy
|
35 |
+
capsicum
|
36 |
+
carrot
|
37 |
+
cashews
|
38 |
+
cauliflower
|
39 |
+
celery
|
40 |
+
cheese
|
41 |
+
cheeseburger
|
42 |
+
cherries
|
43 |
+
chicken_breast
|
44 |
+
chicken_thighs
|
45 |
+
chicken_wings
|
46 |
+
chilli
|
47 |
+
chimichurri
|
48 |
+
chocolate
|
49 |
+
chocolate_cake
|
50 |
+
coconut
|
51 |
+
coffee
|
52 |
+
coleslaw
|
53 |
+
cookies
|
54 |
+
coriander
|
55 |
+
corn
|
56 |
+
corn_chips
|
57 |
+
cream
|
58 |
+
croissant
|
59 |
+
crumbed_chicken
|
60 |
+
cucumber
|
61 |
+
cupcake
|
62 |
+
daikon_radish
|
63 |
+
dates
|
64 |
+
donuts
|
65 |
+
dragonfruit
|
66 |
+
eggplant
|
67 |
+
eggs
|
68 |
+
enoki_mushroom
|
69 |
+
fennel
|
70 |
+
figs
|
71 |
+
french_toast
|
72 |
+
fried_rice
|
73 |
+
fries
|
74 |
+
fruit_juice
|
75 |
+
garlic
|
76 |
+
garlic_bread
|
77 |
+
ginger
|
78 |
+
goji_berries
|
79 |
+
granola
|
80 |
+
grapefruit
|
81 |
+
grapes
|
82 |
+
green_beans
|
83 |
+
green_onion
|
84 |
+
guacamole
|
85 |
+
guava
|
86 |
+
gyoza
|
87 |
+
ham
|
88 |
+
honey
|
89 |
+
hot_chocolate
|
90 |
+
ice_coffee
|
91 |
+
ice_cream
|
92 |
+
iceberg_lettuce
|
93 |
+
jerusalem_artichoke
|
94 |
+
kale
|
95 |
+
karaage_chicken
|
96 |
+
kimchi
|
97 |
+
kiwi_fruit
|
98 |
+
lamb_chops
|
99 |
+
leek
|
100 |
+
lemon
|
101 |
+
lentils
|
102 |
+
lettuce
|
103 |
+
lime
|
104 |
+
mandarin
|
105 |
+
mango
|
106 |
+
maple_syrup
|
107 |
+
mashed_potato
|
108 |
+
mayonnaise
|
109 |
+
milk
|
110 |
+
miso_soup
|
111 |
+
mushrooms
|
112 |
+
nectarines
|
113 |
+
noodles
|
114 |
+
nuts
|
115 |
+
olive_oil
|
116 |
+
olives
|
117 |
+
omelette
|
118 |
+
onion
|
119 |
+
orange
|
120 |
+
orange_juice
|
121 |
+
oysters
|
122 |
+
pain_au_chocolat
|
123 |
+
pancakes
|
124 |
+
papaya
|
125 |
+
parsley
|
126 |
+
parsnips
|
127 |
+
passionfruit
|
128 |
+
pasta
|
129 |
+
pawpaw
|
130 |
+
peach
|
131 |
+
pear
|
132 |
+
peas
|
133 |
+
pickles
|
134 |
+
pineapple
|
135 |
+
pizza
|
136 |
+
plum
|
137 |
+
pomegranate
|
138 |
+
popcorn
|
139 |
+
pork_belly
|
140 |
+
pork_chop
|
141 |
+
pork_loins
|
142 |
+
porridge
|
143 |
+
potato_bake
|
144 |
+
potato_chips
|
145 |
+
potato_scallop
|
146 |
+
potatoes
|
147 |
+
prawns
|
148 |
+
pumpkin
|
149 |
+
radish
|
150 |
+
ramen
|
151 |
+
raspberries
|
152 |
+
red_onion
|
153 |
+
red_wine
|
154 |
+
rhubarb
|
155 |
+
rice
|
156 |
+
roast_beef
|
157 |
+
roast_pork
|
158 |
+
roast_potatoes
|
159 |
+
rockmelon
|
160 |
+
rosemary
|
161 |
+
salad
|
162 |
+
salami
|
163 |
+
salmon
|
164 |
+
salsa
|
165 |
+
salt
|
166 |
+
sandwich
|
167 |
+
sardines
|
168 |
+
sausage_roll
|
169 |
+
sausages
|
170 |
+
scrambled_eggs
|
171 |
+
seaweed
|
172 |
+
shallots
|
173 |
+
snow_peas
|
174 |
+
soda
|
175 |
+
soy_sauce
|
176 |
+
spaghetti_bolognese
|
177 |
+
spinach
|
178 |
+
sports_drink
|
179 |
+
squash
|
180 |
+
starfruit
|
181 |
+
steak
|
182 |
+
strawberries
|
183 |
+
sushi
|
184 |
+
sweet_potato
|
185 |
+
tacos
|
186 |
+
tamarillo
|
187 |
+
taro
|
188 |
+
tea
|
189 |
+
toast
|
190 |
+
tofu
|
191 |
+
tomato
|
192 |
+
tomato_chutney
|
193 |
+
tomato_sauce
|
194 |
+
turnip
|
195 |
+
watermelon
|
196 |
+
white_onion
|
197 |
+
white_wine
|
198 |
+
yoghurt
|
199 |
+
zucchini
|
food_vision_199_classes.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Loading script for the Food Vision 199 classes dataset.
|
3 |
+
|
4 |
+
See the template: https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py
|
5 |
+
See the example for Food101: https://huggingface.co/datasets/food101/blob/main/food101.py
|
6 |
+
See another example: https://huggingface.co/datasets/davanstrien/encyclopedia_britannica/blob/main/encyclopedia_britannica.py
|
7 |
+
"""
|
8 |
+
|
9 |
+
import datasets
|
10 |
+
import os
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
from datasets.tasks import ImageClassification
|
14 |
+
|
15 |
+
_HOMEPAGE = "https://www.nutrify.app"
|
16 |
+
_LICENSE = "TODO"
|
17 |
+
_CITATION = "TODO"
|
18 |
+
_DESCRIPTION = "Images of 199 food classes from the Nutrify app."
|
19 |
+
|
20 |
+
# Read lines of class_names.txt
|
21 |
+
with open("class_names.txt", "r") as f:
|
22 |
+
_NAMES = f.read().splitlines()
|
23 |
+
|
24 |
+
class Food199(datasets.GeneratorBasedBuilder):
|
25 |
+
"""Food199 Images dataset"""
|
26 |
+
|
27 |
+
def _info(self):
|
28 |
+
return datasets.DatasetInfo(
|
29 |
+
description=_DESCRIPTION,
|
30 |
+
features=datasets.Features(
|
31 |
+
{
|
32 |
+
"image": datasets.Image(),
|
33 |
+
"label": datasets.ClassLabel(names=_NAMES)
|
34 |
+
}
|
35 |
+
),
|
36 |
+
supervised_keys=("image", "label"),
|
37 |
+
homepage=_HOMEPAGE,
|
38 |
+
citation=_CITATION,
|
39 |
+
license=_LICENSE,
|
40 |
+
task_templates=[ImageClassification(image_column="image", label_column="label")],
|
41 |
+
)
|
42 |
+
|
43 |
+
def _split_generators(self, dl_manager):
|
44 |
+
"""
|
45 |
+
This function returns the logic to split the dataset into different splits as well as labels.
|
46 |
+
"""
|
47 |
+
csv = dl_manager.download("annotations.csv")
|
48 |
+
df = pd.read_csv(csv)
|
49 |
+
df_train_annotations = df[df["split"] == "train"].to_dict(orient="records")
|
50 |
+
df_test_annotations = df[df["split"] == "test"].to_dict(orient="records")
|
51 |
+
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
54 |
+
gen_kwargs={
|
55 |
+
"annotations": df_train_annotations,
|
56 |
+
}),
|
57 |
+
datasets.SplitGenerator(name=datasets.Split.TEST,
|
58 |
+
gen_kwargs={
|
59 |
+
"annotations": df_test_annotations,
|
60 |
+
})]
|
61 |
+
|
62 |
+
|
63 |
+
def _generate_examples(self, annotations):
|
64 |
+
"""
|
65 |
+
This function takes in the kwargs from the _split_generators method and can then yield information from them.
|
66 |
+
"""
|
67 |
+
for id_, row in enumerate(annotations):
|
68 |
+
row["image"] = row.pop("filename")
|
69 |
+
row["label"] = row.pop("label")
|
70 |
+
yield id_, row
|
71 |
+
|