Delete infer_batch_rvc.py
Browse files- infer_batch_rvc.py +0 -215
infer_batch_rvc.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
v1
|
3 |
-
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33
|
4 |
-
v2
|
5 |
-
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33
|
6 |
-
"""
|
7 |
-
import os, sys, pdb, torch
|
8 |
-
|
9 |
-
now_dir = os.getcwd()
|
10 |
-
sys.path.append(now_dir)
|
11 |
-
import sys
|
12 |
-
import torch
|
13 |
-
import tqdm as tq
|
14 |
-
from multiprocessing import cpu_count
|
15 |
-
|
16 |
-
|
17 |
-
class Config:
|
18 |
-
def __init__(self, device, is_half):
|
19 |
-
self.device = device
|
20 |
-
self.is_half = is_half
|
21 |
-
self.n_cpu = 0
|
22 |
-
self.gpu_name = None
|
23 |
-
self.gpu_mem = None
|
24 |
-
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
25 |
-
|
26 |
-
def device_config(self) -> tuple:
|
27 |
-
if torch.cuda.is_available():
|
28 |
-
i_device = int(self.device.split(":")[-1])
|
29 |
-
self.gpu_name = torch.cuda.get_device_name(i_device)
|
30 |
-
if (
|
31 |
-
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
32 |
-
or "P40" in self.gpu_name.upper()
|
33 |
-
or "1060" in self.gpu_name
|
34 |
-
or "1070" in self.gpu_name
|
35 |
-
or "1080" in self.gpu_name
|
36 |
-
):
|
37 |
-
print("16系/10系显卡和P40强制单精度")
|
38 |
-
self.is_half = False
|
39 |
-
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
40 |
-
with open(f"configs/{config_file}", "r") as f:
|
41 |
-
strr = f.read().replace("true", "false")
|
42 |
-
with open(f"configs/{config_file}", "w") as f:
|
43 |
-
f.write(strr)
|
44 |
-
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
45 |
-
strr = f.read().replace("3.7", "3.0")
|
46 |
-
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
47 |
-
f.write(strr)
|
48 |
-
else:
|
49 |
-
self.gpu_name = None
|
50 |
-
self.gpu_mem = int(
|
51 |
-
torch.cuda.get_device_properties(i_device).total_memory
|
52 |
-
/ 1024
|
53 |
-
/ 1024
|
54 |
-
/ 1024
|
55 |
-
+ 0.4
|
56 |
-
)
|
57 |
-
if self.gpu_mem <= 4:
|
58 |
-
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
59 |
-
strr = f.read().replace("3.7", "3.0")
|
60 |
-
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
61 |
-
f.write(strr)
|
62 |
-
elif torch.backends.mps.is_available():
|
63 |
-
print("没有发现支持的N卡, 使用MPS进行推理")
|
64 |
-
self.device = "mps"
|
65 |
-
else:
|
66 |
-
print("没有发现支持的N卡, 使用CPU进行推理")
|
67 |
-
self.device = "cpu"
|
68 |
-
self.is_half = True
|
69 |
-
|
70 |
-
if self.n_cpu == 0:
|
71 |
-
self.n_cpu = cpu_count()
|
72 |
-
|
73 |
-
if self.is_half:
|
74 |
-
# 6G显存配置
|
75 |
-
x_pad = 3
|
76 |
-
x_query = 10
|
77 |
-
x_center = 60
|
78 |
-
x_max = 65
|
79 |
-
else:
|
80 |
-
# 5G显存配置
|
81 |
-
x_pad = 1
|
82 |
-
x_query = 6
|
83 |
-
x_center = 38
|
84 |
-
x_max = 41
|
85 |
-
|
86 |
-
if self.gpu_mem != None and self.gpu_mem <= 4:
|
87 |
-
x_pad = 1
|
88 |
-
x_query = 5
|
89 |
-
x_center = 30
|
90 |
-
x_max = 32
|
91 |
-
|
92 |
-
return x_pad, x_query, x_center, x_max
|
93 |
-
|
94 |
-
|
95 |
-
f0up_key = sys.argv[1]
|
96 |
-
input_path = sys.argv[2]
|
97 |
-
index_path = sys.argv[3]
|
98 |
-
f0method = sys.argv[4] # harvest or pm
|
99 |
-
opt_path = sys.argv[5]
|
100 |
-
model_path = sys.argv[6]
|
101 |
-
index_rate = float(sys.argv[7])
|
102 |
-
device = sys.argv[8]
|
103 |
-
is_half = sys.argv[9].lower() != "false"
|
104 |
-
filter_radius = int(sys.argv[10])
|
105 |
-
resample_sr = int(sys.argv[11])
|
106 |
-
rms_mix_rate = float(sys.argv[12])
|
107 |
-
protect = float(sys.argv[13])
|
108 |
-
print(sys.argv)
|
109 |
-
config = Config(device, is_half)
|
110 |
-
now_dir = os.getcwd()
|
111 |
-
sys.path.append(now_dir)
|
112 |
-
from vc_infer_pipeline import VC
|
113 |
-
from lib.infer_pack.models import (
|
114 |
-
SynthesizerTrnMs256NSFsid,
|
115 |
-
SynthesizerTrnMs256NSFsid_nono,
|
116 |
-
SynthesizerTrnMs768NSFsid,
|
117 |
-
SynthesizerTrnMs768NSFsid_nono,
|
118 |
-
)
|
119 |
-
from lib.audio import load_audio
|
120 |
-
from fairseq import checkpoint_utils
|
121 |
-
from scipy.io import wavfile
|
122 |
-
|
123 |
-
hubert_model = None
|
124 |
-
|
125 |
-
|
126 |
-
def load_hubert():
|
127 |
-
global hubert_model
|
128 |
-
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
129 |
-
["hubert_base.pt"],
|
130 |
-
suffix="",
|
131 |
-
)
|
132 |
-
hubert_model = models[0]
|
133 |
-
hubert_model = hubert_model.to(device)
|
134 |
-
if is_half:
|
135 |
-
hubert_model = hubert_model.half()
|
136 |
-
else:
|
137 |
-
hubert_model = hubert_model.float()
|
138 |
-
hubert_model.eval()
|
139 |
-
|
140 |
-
|
141 |
-
def vc_single(sid, input_audio, f0_up_key, f0_file, f0_method, file_index, index_rate):
|
142 |
-
global tgt_sr, net_g, vc, hubert_model, version
|
143 |
-
if input_audio is None:
|
144 |
-
return "You need to upload an audio", None
|
145 |
-
f0_up_key = int(f0_up_key)
|
146 |
-
audio = load_audio(input_audio, 16000)
|
147 |
-
times = [0, 0, 0]
|
148 |
-
if hubert_model == None:
|
149 |
-
load_hubert()
|
150 |
-
if_f0 = cpt.get("f0", 1)
|
151 |
-
# audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
|
152 |
-
audio_opt = vc.pipeline(
|
153 |
-
hubert_model,
|
154 |
-
net_g,
|
155 |
-
sid,
|
156 |
-
audio,
|
157 |
-
input_audio,
|
158 |
-
times,
|
159 |
-
f0_up_key,
|
160 |
-
f0_method,
|
161 |
-
file_index,
|
162 |
-
index_rate,
|
163 |
-
if_f0,
|
164 |
-
filter_radius,
|
165 |
-
tgt_sr,
|
166 |
-
resample_sr,
|
167 |
-
rms_mix_rate,
|
168 |
-
version,
|
169 |
-
protect,
|
170 |
-
f0_file=f0_file,
|
171 |
-
)
|
172 |
-
print(times)
|
173 |
-
return audio_opt
|
174 |
-
|
175 |
-
|
176 |
-
def get_vc(model_path):
|
177 |
-
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
|
178 |
-
print("loading pth %s" % model_path)
|
179 |
-
cpt = torch.load(model_path, map_location="cpu")
|
180 |
-
tgt_sr = cpt["config"][-1]
|
181 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
182 |
-
if_f0 = cpt.get("f0", 1)
|
183 |
-
version = cpt.get("version", "v1")
|
184 |
-
if version == "v1":
|
185 |
-
if if_f0 == 1:
|
186 |
-
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
187 |
-
else:
|
188 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
189 |
-
elif version == "v2":
|
190 |
-
if if_f0 == 1: #
|
191 |
-
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
|
192 |
-
else:
|
193 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
194 |
-
del net_g.enc_q
|
195 |
-
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩
|
196 |
-
net_g.eval().to(device)
|
197 |
-
if is_half:
|
198 |
-
net_g = net_g.half()
|
199 |
-
else:
|
200 |
-
net_g = net_g.float()
|
201 |
-
vc = VC(tgt_sr, config)
|
202 |
-
n_spk = cpt["config"][-3]
|
203 |
-
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
204 |
-
|
205 |
-
|
206 |
-
get_vc(model_path)
|
207 |
-
audios = os.listdir(input_path)
|
208 |
-
for file in tq.tqdm(audios):
|
209 |
-
if file.endswith(".wav"):
|
210 |
-
file_path = input_path + "/" + file
|
211 |
-
wav_opt = vc_single(
|
212 |
-
0, file_path, f0up_key, None, f0method, index_path, index_rate
|
213 |
-
)
|
214 |
-
out_path = opt_path + "/" + file
|
215 |
-
wavfile.write(out_path, tgt_sr, wav_opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|