Update README.md
Browse files
README.md
CHANGED
@@ -16,9 +16,17 @@ size_categories:
|
|
16 |
|
17 |
总计 92,421 句剧情对白(带有角色标签)+旁白,从崩坏3的“主线1黄昏、少女、战舰”到“主线第二部03间章:一个梦游者的苦痛”
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
由于是通过 AI pipeline,所以难免存在误差(识别错误等),但此数据质量依旧还算尚可
|
24 |
|
@@ -121,4 +129,70 @@ You can see that sometimes the role names are not consistent (e.g., 德丽莎女
|
|
121 |
萝莎莉娅 331
|
122 |
长光 302
|
123 |
羽兔 293
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
```
|
|
|
16 |
|
17 |
总计 92,421 句剧情对白(带有角色标签)+旁白,从崩坏3的“主线1黄昏、少女、战舰”到“主线第二部03间章:一个梦游者的苦痛”
|
18 |
|
19 |
+
本数据集从 [honkai_impact_3rd_game_playthrough](https://huggingface.co/datasets/mrzjy/honkai_impact_3rd_game_playthrough) 视频数据集出发,经过 AI pipeline 最终获取结构化的文本剧情语料。
|
20 |
|
21 |
+
AI pipeline 概述如下:
|
22 |
+
|
23 |
+
1. 分P下载视频(使用 [BBDown](https://github.com/nilaoda/BBDown) 下载 [BiliBili崩三剧情视频](https://www.bilibili.com/video/BV12W411h76f/))
|
24 |
+
2. 视频帧分割(每1秒取一帧画面)
|
25 |
+
3. 逐帧 OCR 检测文本(使用 [Paddle-OCR](https://github.com/PaddlePaddle/PaddleOCR))
|
26 |
+
4. 逐帧 VLM 结构化解析(使用 [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6),输入为帧图像 + OCR结果)
|
27 |
+
5. 基于规则的后处理
|
28 |
+
- 规范化 VLM 输出(e.g., 去噪、排除格式有问题的输出)
|
29 |
+
- 基于编辑距离等方法的连续帧的信息去重与归并(e.g., 由于播放对白需要时间,话说一半的帧信息会被 merge 到后续话说完整的帧信息中,合并成一帧))
|
30 |
|
31 |
由于是通过 AI pipeline,所以难免存在误差(识别错误等),但此数据质量依旧还算尚可
|
32 |
|
|
|
129 |
萝莎莉娅 331
|
130 |
长光 302
|
131 |
羽兔 293
|
132 |
+
```
|
133 |
+
|
134 |
+
# VLM Prompt
|
135 |
+
|
136 |
+
```
|
137 |
+
PROMPT = """This is an image of RPG game. Given associated OCR result, please help us identify the existence of story narrations and dialogues and extract them in structured format.
|
138 |
+
This is the associated OCR results:
|
139 |
+
```ocr
|
140 |
+
{ocr}
|
141 |
+
```
|
142 |
+
|
143 |
+
There are two types of story content you should extract:
|
144 |
+
|
145 |
+
- Narration: single line or paragraph of narration, telling the story background and plots
|
146 |
+
- Dialogue: dialogue contents spoken by a character. The speaker character name and spoken content must co-appear in the image.
|
147 |
+
|
148 |
+
Note:
|
149 |
+
|
150 |
+
- Be strict with OCR texts, you are NOT allowed to fabricate contents that are not captured by OCR results.
|
151 |
+
- The OCR often separate multiline texts, and it's your task to concatenate consecutive lines if necessary.
|
152 |
+
- There might be noisy textual contents (e.g., advertisement, UI elements, combos, etc.), which are not our interest.
|
153 |
+
- There might be texts indicating state/environment information (e.g., location, time, source, state, etc), you can extract them as well in environment field.
|
154 |
+
|
155 |
+
Please output your response in JSON structure in one of the 3 following ways:
|
156 |
+
|
157 |
+
1. In case of no desired content (neither dialogue nor narration), output a JSON dict whose type is null.
|
158 |
+
|
159 |
+
```json
|
160 |
+
{{"type": null}}
|
161 |
+
```
|
162 |
+
|
163 |
+
2. In case of dialogue
|
164 |
+
|
165 |
+
```json
|
166 |
+
{{
|
167 |
+
"type": "dialogue",
|
168 |
+
"role": "<speaker name>",
|
169 |
+
"content": "<spoken content>",
|
170 |
+
"state": "<state/environment info, null if there isn't any>"
|
171 |
+
}}
|
172 |
+
```
|
173 |
+
|
174 |
+
3. In case of narration
|
175 |
+
|
176 |
+
```json
|
177 |
+
{{
|
178 |
+
"type": "narration",
|
179 |
+
"content": "<narrative content>"
|
180 |
+
}}
|
181 |
+
```"""
|
182 |
+
```
|
183 |
+
|
184 |
+
# VLM code snippet
|
185 |
+
|
186 |
+
```
|
187 |
+
# generate
|
188 |
+
for batch in tqdm(batches):
|
189 |
+
msgs = [
|
190 |
+
[{"role": "user", "content": [Image.open(b["frame_path"]), format_template(b["ocr"])]}]
|
191 |
+
for b in batch
|
192 |
+
]
|
193 |
+
outputs = model.chat(
|
194 |
+
image=None,
|
195 |
+
msgs=msgs,
|
196 |
+
tokenizer=tokenizer
|
197 |
+
)
|
198 |
```
|