parquet-converter commited on
Commit
9a72c87
1 Parent(s): b4b6905

Update parquet files

Browse files
Files changed (5) hide show
  1. README.md +0 -21
  2. has_hypo/hypo-train.parquet +3 -0
  3. hypo.data +0 -0
  4. hypo.py +0 -168
  5. hypo/hypo-train.parquet +3 -0
README.md DELETED
@@ -1,21 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - hypo
6
- - tabular_classification
7
- - binary_classification
8
- pretty_name: Hypo
9
- task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
10
- - tabular-classification
11
- configs:
12
- - hypo
13
- ---
14
- # Hypo
15
- The Hypo dataset.
16
-
17
- # Configurations and tasks
18
- | **Configuration** | **Task** | **Description**
19
- |-----------------------|---------------------------|
20
- | hypo | Multiclass classification.| What kind of hypothyroidism does the patient have? |
21
- | has_hypo | Binary classification.| Does the patient hypothyroidism does the patient have? |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
has_hypo/hypo-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b153a5335f1c6e9400c0e47fbc83cc51885d8ee5a97e6316ddea8b2b67f6d3f8
3
+ size 65895
hypo.data DELETED
The diff for this file is too large to render. See raw diff
 
hypo.py DELETED
@@ -1,168 +0,0 @@
1
- """Hypo Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
-
13
- _ENCODING_DICS = {
14
- "class": {
15
- "negative": 0,
16
- "compensatedhypothyroid": 1,
17
- "secondaryhypothyroid": 2,
18
- "primaryhypothyroid": 3
19
- }
20
- }
21
-
22
- DESCRIPTION = "Hypo dataset."
23
- _HOMEPAGE = ""
24
- _URLS = ("")
25
- _CITATION = """"""
26
-
27
- # Dataset info
28
- urls_per_split = {
29
- "train": "https://huggingface.co/datasets/mstz/hypo/resolve/main/hypo.data"
30
- }
31
- features_types_per_config = {
32
- "hypo": {
33
- "age": datasets.Value("int64"),
34
- "sex": datasets.Value("string"),
35
- "on_thyroxine": datasets.Value("bool"),
36
- "query_on_thyroxine": datasets.Value("bool"),
37
- "on_antithyroid_medication": datasets.Value("bool"),
38
- "sick": datasets.Value("bool"),
39
- "pregnant": datasets.Value("bool"),
40
- "thyroid_surgery": datasets.Value("bool"),
41
- "I131_treatment": datasets.Value("bool"),
42
- "query_hypothyroid": datasets.Value("bool"),
43
- "query_hyperthyroid": datasets.Value("bool"),
44
- "lithium": datasets.Value("bool"),
45
- "goitre": datasets.Value("bool"),
46
- "tumor": datasets.Value("bool"),
47
- "hypopituitary": datasets.Value("bool"),
48
- "psych": datasets.Value("bool"),
49
- "TSH_measured": datasets.Value("bool"),
50
- "TSH": datasets.Value("string"),
51
- "T3_measured": datasets.Value("bool"),
52
- "T3": datasets.Value("float64"),
53
- "TT4_measured": datasets.Value("bool"),
54
- "TT4": datasets.Value("float64"),
55
- "T4U_measured": datasets.Value("bool"),
56
- "T4U": datasets.Value("float64"),
57
- "FTI_measured": datasets.Value("bool"),
58
- "FTI": datasets.Value("float64"),
59
- "TBG_measured": datasets.Value("string"),
60
- "referral_source": datasets.Value("string"),
61
- "class": datasets.ClassLabel(num_classes=4,
62
- names=("negative", "compensated hypothyroid", "secondary hypothyroid", "primary hypothyroid"))
63
- },
64
- "has_hypo": {
65
- "age": datasets.Value("int64"),
66
- "sex": datasets.Value("string"),
67
- "on_thyroxine": datasets.Value("bool"),
68
- "query_on_thyroxine": datasets.Value("bool"),
69
- "on_antithyroid_medication": datasets.Value("bool"),
70
- "sick": datasets.Value("bool"),
71
- "pregnant": datasets.Value("bool"),
72
- "thyroid_surgery": datasets.Value("bool"),
73
- "I131_treatment": datasets.Value("bool"),
74
- "query_hypothyroid": datasets.Value("bool"),
75
- "query_hyperthyroid": datasets.Value("bool"),
76
- "lithium": datasets.Value("bool"),
77
- "goitre": datasets.Value("bool"),
78
- "tumor": datasets.Value("bool"),
79
- "hypopituitary": datasets.Value("bool"),
80
- "psych": datasets.Value("bool"),
81
- "TSH_measured": datasets.Value("bool"),
82
- "TSH": datasets.Value("string"),
83
- "T3_measured": datasets.Value("bool"),
84
- "T3": datasets.Value("string"),
85
- "TT4_measured": datasets.Value("bool"),
86
- "TT4": datasets.Value("float64"),
87
- "T4U_measured": datasets.Value("bool"),
88
- "T4U": datasets.Value("float64"),
89
- "FTI_measured": datasets.Value("bool"),
90
- "FTI": datasets.Value("float64"),
91
- "TBG_measured": datasets.Value("string"),
92
- "referral_source": datasets.Value("string"),
93
- "class": datasets.ClassLabel(num_classes=2)
94
- },
95
- }
96
-
97
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
98
-
99
-
100
- class HypoConfig(datasets.BuilderConfig):
101
- def __init__(self, **kwargs):
102
- super(HypoConfig, self).__init__(version=VERSION, **kwargs)
103
- self.features = features_per_config[kwargs["name"]]
104
-
105
-
106
- class Hypo(datasets.GeneratorBasedBuilder):
107
- # dataset versions
108
- DEFAULT_CONFIG = "hypo"
109
- BUILDER_CONFIGS = [
110
- HypoConfig(name="hypo", description="Hypo for multiclass classification."),
111
- HypoConfig(name="has_hypo", description="Hypo for binary classification."),
112
- ]
113
-
114
-
115
- def _info(self):
116
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
117
- features=features_per_config[self.config.name])
118
-
119
- return info
120
-
121
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
122
- downloads = dl_manager.download_and_extract(urls_per_split)
123
-
124
- return [
125
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
126
- ]
127
-
128
- def _generate_examples(self, filepath: str):
129
- data = pandas.read_csv(filepath)
130
- data = self.preprocess(data)
131
-
132
- for row_id, row in data.iterrows():
133
- data_row = dict(row)
134
-
135
- yield row_id, data_row
136
-
137
- def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
138
- data.drop("id", axis="columns", inplace=True)
139
- data.drop("TBG", axis="columns", inplace=True)
140
-
141
- data = data[data.age != "?"]
142
- data = data[data.sex != "?"]
143
- data = data[data.TSH != "?"]
144
-
145
- data.loc[data.T3 == "?", "T3"] = -1
146
- data.loc[data.TT4 == "?", "TT4"] = -1
147
- data.loc[data.T4U == "?", "T4U"] = -1
148
- data.loc[data.FTI == "?", "FTI"] = -1
149
-
150
- data = data.infer_objects()
151
-
152
- for feature in _ENCODING_DICS:
153
- encoding_function = partial(self.encode, feature)
154
- data[feature] = data[feature].apply(encoding_function)
155
-
156
- if self.config.name == "has_hypo":
157
- data["class"] = data["class"].apply(lambda x: 0 if x == 0 else 1)
158
- print("has hypo\n\n\n")
159
-
160
- print("classes")
161
- print(data["class"].unique())
162
-
163
- return data[list(features_types_per_config[self.config.name].keys())]
164
-
165
- def encode(self, feature, value):
166
- if feature in _ENCODING_DICS:
167
- return _ENCODING_DICS[feature][value]
168
- raise ValueError(f"Unknown feature: {feature}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hypo/hypo-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1faf1928a25a87bd4d7e2c9374cc93ed0207374740a7eb5525504cb028709d39
3
+ size 66726