|
"""NBFI: A Census Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"ID", |
|
"Client_Income", |
|
"Car_Owned", |
|
"Bike_Owned", |
|
"Active_Loan", |
|
"House_Own", |
|
"Child_Count", |
|
"Credit_Amount", |
|
"Loan_Annuity", |
|
"Accompany_Client", |
|
"Client_Income_Type", |
|
"Client_Education", |
|
"Client_Marital_Status", |
|
"Client_Gender", |
|
"Loan_Contract_Type", |
|
"Client_Housing_Type", |
|
"Population_Region_Relative", |
|
"Age_Days", |
|
"Employed_Days", |
|
"Registration_Days", |
|
"ID_Days", |
|
"Own_House_Age", |
|
"Mobile_Tag", |
|
"Homephone_Tag", |
|
"Workphone_Working", |
|
"Client_Occupation", |
|
"Client_Family_Members", |
|
"Cleint_City_Rating", |
|
"Application_Process_Day", |
|
"Application_Process_Hour", |
|
"Client_Permanent_Match_Tag", |
|
"Client_Contact_Work_Tag", |
|
"Type_Organization", |
|
"Score_Source_1", |
|
"Score_Source_2", |
|
"Score_Source_3", |
|
"Social_Circle_Default", |
|
"Phone_Change", |
|
"Credit_Bureau", |
|
"Default" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"income", |
|
"owns_a_car", |
|
"owns_a_bike", |
|
"has_an_active_loan", |
|
"owns_a_house", |
|
"nr_children", |
|
"credit", |
|
"loan_annuity", |
|
"accompanied_by", |
|
"income_type", |
|
"education_level", |
|
"marital_status", |
|
"is_male", |
|
"type_of_contract", |
|
"type_of_housing", |
|
"residence_density", |
|
"age_in_days", |
|
"consecutive_days_of_employment", |
|
"nr_days_since_last_registration_change", |
|
"nr_days_since_last_document_change", |
|
"has_provided_a_mobile_number", |
|
"has_provided_a_home_number", |
|
"was_reachable_at_work", |
|
"job", |
|
"nr_family_members", |
|
"city_rating", |
|
"weekday_of_application", |
|
"hour_of_application", |
|
"same_residence_and_home", |
|
"same_work_and_home", |
|
"score_1", |
|
"score_2", |
|
"score_3", |
|
"nr_defaults_in_social_circle", |
|
"inquiries_in_last_year", |
|
"has_defaulted" |
|
] |
|
features_types_per_config = { |
|
"default": { |
|
"income": datasets.Value("float32"), |
|
"owns_a_car": datasets.Value("bool"), |
|
"owns_a_bike": datasets.Value("bool"), |
|
"has_an_active_loan": datasets.Value("bool"), |
|
"owns_a_house": datasets.Value("bool"), |
|
"nr_children": datasets.Value("int8"), |
|
"credit": datasets.Value("float32"), |
|
"loan_annuity": datasets.Value("float32"), |
|
"accompanied_by": datasets.Value("string"), |
|
"income_type": datasets.Value("string"), |
|
"education_level": datasets.Value("float32"), |
|
"marital_status": datasets.Value("string"), |
|
"is_male": datasets.Value("bool"), |
|
"type_of_contract": datasets.Value("string"), |
|
"type_of_housing": datasets.Value("string"), |
|
"residence_density": datasets.Value("float32"), |
|
"age_in_days": datasets.Value("int32"), |
|
"consecutive_days_of_employment": datasets.Value("int16"), |
|
"nr_days_since_last_registration_change": datasets.Value("int32"), |
|
"nr_days_since_last_document_change": datasets.Value("int32"), |
|
"has_provided_a_mobile_number": datasets.Value("bool"), |
|
"has_provided_a_home_number": datasets.Value("bool"), |
|
"was_reachable_at_work": datasets.Value("bool"), |
|
"job": datasets.Value("string"), |
|
"nr_family_members": datasets.Value("int8"), |
|
"city_rating": datasets.Value("int8"), |
|
"weekday_of_application": datasets.Value("int8"), |
|
"hour_of_application": datasets.Value("float32"), |
|
"same_residence_and_home": datasets.Value("bool"), |
|
"same_work_and_home": datasets.Value("bool"), |
|
"score_1": datasets.Value("float32"), |
|
"score_2": datasets.Value("float32"), |
|
"score_3": datasets.Value("float32"), |
|
"nr_defaults_in_social_circle": datasets.Value("int8"), |
|
"inquiries_in_last_year": datasets.Value("float32"), |
|
"has_defaulted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
} |
|
_ENCODING_DICS = {} |
|
_EDUCATION_ENCODING = { |
|
"Junior secondary": 0, |
|
"Secondary": 1, |
|
"Graduation dropout": 2, |
|
"Graduation": 2, |
|
"Post Grad": 4 |
|
} |
|
|
|
DESCRIPTION = "NBFI dataset from default prediction." |
|
_HOMEPAGE = "https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset" |
|
_URLS = ("https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://gist.githubusercontent.com/msetzu/6c83dc3b7092d428ae2f08dc91e1020c/raw/9fc3171b293d0dc29963357450308eb4c7e3a15b/Train_Dataset.csv", |
|
"test": "https://gist.githubusercontent.com/msetzu/f0032b855008f579299d7ad78d9dd9c2/raw/ba42badeb10b505cb283bdb16d3de581ffe7a332/Test_Dataset.csv" |
|
} |
|
|
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class NBFIConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(NBFIConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class NBFI(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "default" |
|
BUILDER_CONFIGS = [ |
|
NBFIConfig(name="default", |
|
description="NBFI for default binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
if self.config.name not in features_per_config: |
|
raise ValueError(f"Unknown configuration: {self.config.name}") |
|
|
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name == "default": |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
else: |
|
raise ValueError(f"Unknown config: {self.config.name}") |
|
|
|
|
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: |
|
data.drop("ID", axis="columns", inplace=True) |
|
data.drop("Own_House_Age", axis="columns", inplace=True) |
|
data.drop("Type_Organization", axis="columns", inplace=True) |
|
data.drop("Phone_Change", axis="columns", inplace=True) |
|
|
|
data = data[~data.Client_Income.isna()] |
|
data = data[~data.Client_Education.isna()] |
|
data = data[~data.Child_Count.isna()] |
|
data = data[~data.Client_Marital_Status.isna()] |
|
data = data[~data.Client_Gender.isna()] |
|
data = data[~data.Loan_Contract_Type.isna()] |
|
data = data[~data.Client_Housing_Type.isna()] |
|
data = data[~data.Age_Days.isna()] |
|
data = data[~data.Employed_Days.isna()] |
|
data = data[~data.Registration_Days.isna()] |
|
data = data[~data.ID_Days.isna()] |
|
data = data[~data.Cleint_City_Rating.isna()] |
|
data = data[~data.Application_Process_Day.isna()] |
|
data = data[~data.Application_Process_Hour.isna()] |
|
data = data[~data.Client_Permanent_Match_Tag.isna()] |
|
data = data[~data.Client_Contact_Work_Tag.isna()] |
|
data = data[~data.Score_Source_1.isna()] |
|
data = data[~data.Score_Source_2.isna()] |
|
data = data[~data.Score_Source_3.isna()] |
|
data = data[~data.Credit_Bureau.isna()] |
|
data = data[~data.Credit_Amount.isna()] |
|
data = data[~data.Loan_Annuity.isna()] |
|
data = data[~data.Accompany_Client.isna()] |
|
data = data[~data.Client_Occupation.isna()] |
|
data = data[~data.Client_Family_Members.isna()] |
|
data = data[~data.Social_Circle_Default.isna()] |
|
data = data[~data.Population_Region_Relative.isin(("@", "#"))] |
|
data = data[data.Loan_Annuity != "#VALUE!"] |
|
data = data[data.Age_Days != "x"] |
|
data = data[data.Employed_Days != "x"] |
|
data = data[data.Registration_Days != "x"] |
|
data = data[data.ID_Days != "x"] |
|
|
|
print("len(data.columns)") |
|
print(len(data.columns)) |
|
print("len(_BASE_FEATURE_NAMES)") |
|
print(len(_BASE_FEATURE_NAMES)) |
|
print("len(features_types_per_config[config].keys())") |
|
print(len(features_types_per_config[config].keys())) |
|
print("data.columns, features_types_per_config, _BASE_FEATURE_NAMES") |
|
for f, ft, fb in zip(data.columns, features_types_per_config[config].keys(), _BASE_FEATURE_NAMES): |
|
print(f, ft, fb) |
|
|
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
data["education_level"] = data["education_level"].apply(lambda x: _EDUCATION_ENCODING[x]) |
|
data["is_male"] = data["is_male"].apply(lambda x: x == "M") |
|
data["owns_a_car"] = data["owns_a_car"].apply(bool) |
|
data["owns_a_bike"] = data["owns_a_bike"].apply(bool) |
|
data["has_an_active_loan"] = data["has_an_active_loan"].apply(bool) |
|
data["owns_a_house"] = data["owns_a_house"].apply(bool) |
|
data["is_male"] = data["is_male"].apply(bool) |
|
data["has_provided_a_mobile_number"] = data["has_provided_a_mobile_number"].apply(bool) |
|
data["has_provided_a_home_number"] = data["has_provided_a_home_number"].apply(bool) |
|
data["was_reachable_at_work"] = data["was_reachable_at_work"].apply(bool) |
|
data["same_residence_and_home"] = data["same_residence_and_home"].apply(bool) |
|
data["same_work_and_home"] = data["same_work_and_home"].apply(bool) |
|
data["residence_density"] = data["residence_density"].apply(float) |
|
|
|
data = data.astype({ |
|
"is_male": "bool", |
|
"nr_children": "int8" |
|
}) |
|
|
|
|
|
|
|
return data[list(features_types_per_config[config].keys())] |
|
|
|
|