mstz commited on
Commit
918a573
1 Parent(s): 43d96ce

Upload nbfi.py

Browse files
Files changed (1) hide show
  1. nbfi.py +3 -14
nbfi.py CHANGED
@@ -145,8 +145,7 @@ _CITATION = """"""
145
 
146
  # Dataset info
147
  urls_per_split = {
148
- "train": "https://gist.githubusercontent.com/msetzu/6c83dc3b7092d428ae2f08dc91e1020c/raw/9fc3171b293d0dc29963357450308eb4c7e3a15b/Train_Dataset.csv",
149
- "test": "https://gist.githubusercontent.com/msetzu/f0032b855008f579299d7ad78d9dd9c2/raw/ba42badeb10b505cb283bdb16d3de581ffe7a332/Test_Dataset.csv"
150
  }
151
 
152
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
@@ -180,8 +179,7 @@ class NBFI(datasets.GeneratorBasedBuilder):
180
  downloads = dl_manager.download_and_extract(urls_per_split)
181
 
182
  return [
183
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
184
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
185
  ]
186
 
187
  def _generate_examples(self, filepath: str):
@@ -199,6 +197,7 @@ class NBFI(datasets.GeneratorBasedBuilder):
199
 
200
 
201
  def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
 
202
  data.drop("ID", axis="columns", inplace=True)
203
  data.drop("Own_House_Age", axis="columns", inplace=True)
204
  data.drop("Type_Organization", axis="columns", inplace=True)
@@ -237,16 +236,6 @@ class NBFI(datasets.GeneratorBasedBuilder):
237
  data = data[data.Registration_Days != "x"]
238
  data = data[data.ID_Days != "x"]
239
 
240
- print("len(data.columns)")
241
- print(len(data.columns))
242
- print("len(_BASE_FEATURE_NAMES)")
243
- print(len(_BASE_FEATURE_NAMES))
244
- print("len(features_types_per_config[config].keys())")
245
- print(len(features_types_per_config[config].keys()))
246
- print("data.columns, features_types_per_config, _BASE_FEATURE_NAMES")
247
- for f, ft, fb in zip(data.columns, features_types_per_config[config].keys(), _BASE_FEATURE_NAMES):
248
- print(f, ft, fb)
249
-
250
  data.columns = _BASE_FEATURE_NAMES
251
 
252
  data["education_level"] = data["education_level"].apply(lambda x: _EDUCATION_ENCODING[x])
 
145
 
146
  # Dataset info
147
  urls_per_split = {
148
+ "train": "https://gist.githubusercontent.com/msetzu/6c83dc3b7092d428ae2f08dc91e1020c/raw/9fc3171b293d0dc29963357450308eb4c7e3a15b/Train_Dataset.csv"
 
149
  }
150
 
151
  features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
 
179
  downloads = dl_manager.download_and_extract(urls_per_split)
180
 
181
  return [
182
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
 
183
  ]
184
 
185
  def _generate_examples(self, filepath: str):
 
197
 
198
 
199
  def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
200
+ print(data.columns)
201
  data.drop("ID", axis="columns", inplace=True)
202
  data.drop("Own_House_Age", axis="columns", inplace=True)
203
  data.drop("Type_Organization", axis="columns", inplace=True)
 
236
  data = data[data.Registration_Days != "x"]
237
  data = data[data.ID_Days != "x"]
238
 
 
 
 
 
 
 
 
 
 
 
239
  data.columns = _BASE_FEATURE_NAMES
240
 
241
  data["education_level"] = data["education_level"].apply(lambda x: _EDUCATION_ENCODING[x])