|
{: 1722304978.8845, : , : , : , : {}, : 1722304977.8763, : 1722304978.8845, : , : , : , : , : [[, Mask and Infill\Mask and Infill\]], : } |
|
{: 1722304978.8845, : , : , : , : {}, : 1722304977.8763, : 1722304978.8845, : , : , : , : , : [[, ]], : } |
|
{: 1722304986.0474, : , : , : , : {}, : 1722304985.1247, : 1722304986.0474, : , : , : , : , : [[, ]], : } |
|
{: 1722304986.0474, : , : , : , : {}, : 1722304985.1247, : 1722304986.0474, : , : , : , : , : [[, Baby, It's Cold Outside\" is a popular song written by Frank Loesser in 1944 and popularized in the 1949 film Neptune's Daughter. While the lyrics make no mention of a holiday, it is commonly regarded as a Christmas song owing to its winter theme. The song was released in eight recordings in 1949—including well-known versions by Ella Fitzgerald and Louis Jordan, and by Dean Martin and Marilyn Maxwell—and has been covered numerous times since.\nHistory\nIn 1944, Loesser wrote \ to sing with his wife, Lynn Garland, at their housewarming party in New York City at the Navarro Hotel. They sang the song to indicate to guests that it was time to leave. Garland has written that after the first performance, \ In 1948, after years of performing the song, Loesser sold it to MGM for the 1949 romantic comedy Neptune's Daughter. Garland was furious: \"I felt as betrayed as if I'd caught him in bed with another woman.\]], : } |
|
{: 1722304990.98, : , : , : , : {}, : 1722304990.7411, : 1722304990.98, : , : , : , : , : [[, ]], : } |
|
{: 1722304990.98, : , : , : , : {}, : 1722304990.7411, : 1722304990.98, : , : , : , : , : [[, ]], : } |
|
{: 1722305000.0153, : , : , : , : {}, : 1722304999.8039, : 1722305000.0153, : , : , : , : , : [[, ]], : } |
|
{: 1722305000.0153, : , : , : , : {}, : 1722304999.8039, : 1722305000.0153, : , : , : , : , : [[, ]], : } |
|
{: 1722305078.6563, : , : , : , : {}, : 1722305078.4572, : 1722305078.6563, : , : , : , : , : [[, Computing Machinery and Intelligence\I propose to consider the question, 'Can machines think? Because \"thinking\" is difficult to define, Turing chooses to \"replace the question by another, which is closely related to it and is expressed in relatively unambiguous words.\" Turing describes the new form of the problem in terms of a three-person game called the \"imitation game\", in which an interrogator asks questions of a man and a woman in another room in order to determine the correct sex of the two players. Turing's new question is: \ This question, Turing believed, was one that could actually be answered. In the remainder of the paper, he argued against all the major objections to the proposition that \.\nSince Turing introduced his test, it has been both highly influential and widely criticized, and has become an important concept in the philosophy of artificial intelligence. Philosopher John Searle would comment on the Turing test in his Chinese room argument, a thought experiment that stipulates that a machine cannot have a \, \, or \, regardless of how intelligently or human-like the program may make the computer behave. Searle criticizes Turing's test and claims it is insufficient to detect the presence of consciousness.\nHistory"]], "corpus": "wikipedia"} |
|
{"tstamp": 1722305178.7998, "task_type": "retrieval", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722305178.5602, "finish": 1722305178.7998, "ip": "", "conv_id": "a721ba1ec728453388b30d0efed8f994", "model_name": "GritLM/GritLM-7B", "prompt": "what is the difference between an electronic signal and an electromagnetic signal?", "output": [["what is the difference between an electronic signal and an electromagnetic signal?", "Gaming Stackexchange\n\nQ: What's the difference between semaphore and electric signals? In OpenTTD you can use electric signals and semaphore signals. In every instance I've ever seen people use electric signals to direct their trains. On the wiki the only mention of semaphores is \"don't hold down control otherwise you'll end up with a semaphore\". This suggests to me that semaphores are unwanted and have a different function to normal signals that is only applicable in complex circumstances. I couldn't find anything on the internet detailing their function. \nWhat is the functional difference between semaphore and electric signals?\n\nA: There is no functional difference between the two. By default the game will construct semaphores before a certain date defined in the Advanced Game Options > Construction section, to mimic the introduction of electrical signals in real life. Holding down Ctrl overrides that and builds semaphores instead. \ncorpusstackexchange |
|
tstamptask_typeretrievaltypechatmodelnomic-ai/nomic-embed-text-v1.5gen_paramsstartfinishipconv_id03037905b8a749e399e111e32c19baeemodel_namenomic-ai/nomic-embed-text-v1.5promptwhat is the difference between an electronic signal and an electromagnetic signal?outputwhat is the difference between an electronic signal and an electromagnetic signal?Askubuntu Stackexchange\n\nQ: Trouble Installing libxp6 and multi-arch-support I am following this guide, but I have run into some difficulties at step 11. When I type\nsudo apt-get install ./libxp6_1.0.2-2_amd64.deb\n\nI get\nReading package lists... Done\nBuilding dependency tree \nReading state information... Done\nNote, selecting 'libxp6' instead of './libxp6_1.0.2-2_amd64.deb'\nSome packages could not be installed. This may mean that you have\nrequested an impossible situation or if you are using the unstable\ndistribution that some required packages have not yet been created\nor been moved out of Incoming.\nThe following information may help to resolve the situation:\n\nThe following packages have unmet dependencies:\n libxp6 : PreDepends: multiarch-support but it is not installable\nE: Unable to correct problems, you have held broken packages.\n\nlibxp6 and multiarch-support are what seem to be giving me difficulties. Searching on the web has given me a little, but not enough to install. Even the Ubuntu package website isn't helping.\nAny help would be appreciated.\n\nA: Then you have to install multiarch-support package from 18.04 LTS first with\ncd ~/Downloads\nwget http://archive.ubuntu.com/ubuntu/pool/main/g/glibc/multiarch-support_2.27-3ubuntu1_amd64.deb\nsudo apt-get install ./multiarch-support_2.27-3ubuntu1_amd64.deb\n\nand continue to follow the guide.\n"]], "corpus": "stackexchange"} |
|
{"tstamp": 1722305223.7026, "task_type": "retrieval", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722305223.4442, "finish": 1722305223.7026, "ip": "", "conv_id": "9f4dfa402ea64c74bfec3768569b6d00", "model_name": "GritLM/GritLM-7B", "prompt": "How can deep learning be used to design communication systems as end-to-end reconstruction tasks? ", "output": [["How can deep learning be used to design communication systems as end-to-end reconstruction tasks? ", "Title: An Introduction to Deep Learning for the Physical Layer\n\nAbstract: We present and discuss several novel applications of deep learning for the physical layer. By interpreting a communications system as an autoencoder, we develop a fundamental new way to think about communications system design as an end-to-end reconstruction task that seeks to jointly optimize transmitter and receiver components in a single process. We show how this idea can be extended to networks of multiple transmitters and receivers and present the concept of radio transformer networks as a means to incorporate expert domain knowledge in the machine learning model. Lastly, we demonstrate the application of convolutional neural networks on raw IQ samples for modulation classification which achieves competitive accuracy with respect to traditional schemes relying on expert features. The paper is concluded with a discussion of open challenges and areas for future investigation."]], "corpus": "arxiv"} |
|
{"tstamp": 1722305223.7026, "task_type": "retrieval", "type": "chat", "model": "intfloat/e5-mistral-7b-instruct", "gen_params": {}, "start": 1722305223.4442, "finish": 1722305223.7026, "ip": "", "conv_id": "fb3390a4534f41758663e225ee7ed9a6", "model_name": "intfloat/e5-mistral-7b-instruct", "prompt": "How can deep learning be used to design communication systems as end-to-end reconstruction tasks? ", "output": [["How can deep learning be used to design communication systems as end-to-end reconstruction tasks? ", "Title: Design of Communication Systems using Deep Learning: A Variational Inference Perspective\n\nAbstract: Recent research in the design of end to end communication system using deep learning has produced models which can outperform traditional communication schemes. Most of these architectures leveraged autoencoders to design the encoder at the transmitter and decoder at the receiver and train them jointly by modeling transmit symbols as latent codes from the encoder. However, in communication systems, the receiver has to work with noise corrupted versions of transmit symbols. Traditional autoencoders are not designed to work with latent codes corrupted with noise. In this work, we provide a framework to design end to end communication systems which accounts for the existence of noise corrupted transmit symbols. The proposed method uses deep neural architecture. An objective function for optimizing these models is derived based on the concepts of variational inference. Further, domain knowledge such as channel type can be systematically integrated into the objective. Through numerical simulation, the proposed method is shown to consistently produce models with better packing density and achieving it faster in multiple popular channel models as compared to the previous works leveraging deep learning models."]], "corpus": "arxiv"} |
|
{"tstamp": 1722305229.7963, "task_type": "retrieval", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1722305229.6152, "finish": 1722305229.7963, "ip": "", "conv_id": "6cf9d4db20f8436c8c7f2ccaca29d2fa", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": "what is the difference between cluster point and limit point?", "output": [["what is the difference between cluster point and limit point?", "Askubuntu Stackexchange\n\nQ: How to enable user sharing per instructions? I have this entry in .xsession-errors log\n\"Nautilus-Share-Message: Called \"net usershare info\" but it failed: 'net usershare' returned \nerror 255: net usershare: cannot open usershare directory /var/lib/samba/usershares. \nError No such file or directory\nPlease ask your system administrator to enable user sharing.\n\nThis is in relation to my applets having to be reloaded after every boot. Just wondering how I would enable user sharing, and how it affects my applets ??\n\nA: I don't think this effects your applets at all, that's probably a different bug. You could just make the directory with sudo:\nsudo mkdir -p /var/lib/samba/usershares\n\nBut I don't really know what it will do.\ncorpusstackexchange |
|
tstamptask_typeretrievaltypechatmodelBAAI/bge-large-en-v1.5gen_paramsstartfinishipconv_id38308d8cc72f4a24b8ddc6bafec79a96model_nameBAAI/bge-large-en-v1.5promptwhat is the difference between cluster point and limit point?outputwhat is the difference between cluster point and limit point?Math Stackexchange\n\nQ: Limit and limit points What is the basic difference between limit and limit points, and if a sequence has one unique limit how it can have a lot of limit points \n\nA: A limit point is a generalization of a limit (each limit is a limit point but not vice versa). You can see this in the definition:\nLimit: $a$ is a limit of $(a_n)$, iff in each neighborhood of $a$ are almost all elements of $(a_n)$.\nLimit point: $a$ is a limit of $(a_n)$, iff in each neighborhood of $a$ are infinite elements of $(a_n)$.\nI highlighted the difference between both definitions.\nBecause only infinite elements need to be in any neighborhood of $a$. There can be infinite elements outside this neighborhood which can clustered to another limit point. This is the reason why there might be many limit points for a sequence. If $a$ is a limit only finite elements can be outside any given neighborhood which is not enough to go to another limit.\ncorpusstackexchange |
|
tstamptask_typeretrievaltypechatmodelBM25gen_paramsstartfinishipconv_idd56443b4b3064e69a3fc99eabc8fbf8fmodel_nameBM25promptmass effect 1 how many skill points total?outputmass effect 1 how many skill points total?Gaming Stackexchange\n\nQ: How many skill points will I have at max level? What is the maximum level in Mass Effect 3?\nHow many skill points will Shepard have at max level? \nIf NPC companions earn a different number of skill points than Shepard, what's the number they'll have at max level?\n\nA: Since this question seems to have been deemed the Canonical by mods:\nThe maximum character level is 60. At this level, Shepard will have earned a total of 181 Skill Points.\nMaxing a single skill requires 21 points.\nThere are enough points in the game to max out a total of 8 skills, with a few left over.\nShepard, conveniently enough, has 8 skills, plus one slot for a Bonus Power.\nSo, you can come very close to maxing out all skills, but you can't quite make it to maxing out all 9. You can max out 8 of them, and have 13 points remaining for the 9th, which lets you get to rank 4. You'll have 2 points left over. Alternately, you could max out 7 skills, get two to rank 5, and have 3 points left over.\ncorpusstackexchange |
|
tstamptask_typeretrievaltypechatmodelmixedbread-ai/mxbai-embed-large-v1gen_paramsstartfinishipconv_id2766c8817d564f3fa47a1aa8eeaa0b03model_namemixedbread-ai/mxbai-embed-large-v1promptmass effect 1 how many skill points total?outputmass effect 1 how many skill points total?Gaming Stackexchange\n\nQ: How many skill points will I have at max level? What is the maximum level in Mass Effect 3?\nHow many skill points will Shepard have at max level? \nIf NPC companions earn a different number of skill points than Shepard, what's the number they'll have at max level?\n\nA: Since this question seems to have been deemed the Canonical by mods:\nThe maximum character level is 60. At this level, Shepard will have earned a total of 181 Skill Points.\nMaxing a single skill requires 21 points.\nThere are enough points in the game to max out a total of 8 skills, with a few left over.\nShepard, conveniently enough, has 8 skills, plus one slot for a Bonus Power.\nSo, you can come very close to maxing out all skills, but you can't quite make it to maxing out all 9. You can max out 8 of them, and have 13 points remaining for the 9th, which lets you get to rank 4. You'll have 2 points left over. Alternately, you could max out 7 skills, get two to rank 5, and have 3 points left over.\ncorpusstackexchange |
|
tstamptask_typeretrievaltypechatmodelGritLM/GritLM-7Bgen_paramsstartfinishipconv_idbc1a7d6500334478abf4839584bbeaecmodel_nameGritLM/GritLM-7BpromptHow does the Brain Network Transformer leverage connection profiles and orthonormal clustering to analyze mental disorders?outputHow does the Brain Network Transformer leverage connection profiles and orthonormal clustering to analyze mental disorders?Title: Brain Network Transformer\n\nAbstract: Human brains are commonly modeled as networks of Regions of Interest (ROIs) and their connections for the understanding of brain functions and mental disorders. Recently, Transformer-based models have been studied over different types of data, including graphs, shown to bring performance gains widely. In this work, we study Transformer-based models for brain network analysis. Driven by the unique properties of data, we model brain networks as graphs with nodes of fixed size and order, which allows us to (1) use connection profiles as node features to provide natural and low-cost positional information and (2) learn pair-wise connection strengths among ROIs with efficient attention weights across individuals that are predictive towards downstream analysis tasks. Moreover, we propose an Orthonormal Clustering Readout operation based on self-supervised soft clustering and orthonormal projection. This design accounts for the underlying functional modules that determine similar behaviors among groups of ROIs, leading to distinguishable cluster-aware node embeddings and informative graph embeddings. Finally, we re-standardize the evaluation pipeline on the only one publicly available large-scale brain network dataset of ABIDE, to enable meaningful comparison of different models. Experiment results show clear improvements of our proposed Brain Network Transformer on both the public ABIDE and our restricted ABCD datasets. The implementation is available at https://github.com/Wayfear/BrainNetworkTransformer.corpusarxiv |
|
tstamptask_typeretrievaltypechatmodelsentence-transformers/all-MiniLM-L6-v2gen_paramsstartfinishipconv_id0848dc0be9b94d688857e785d82e9f51model_namesentence-transformers/all-MiniLM-L6-v2promptHow does the Brain Network Transformer leverage connection profiles and orthonormal clustering to analyze mental disorders?outputHow does the Brain Network Transformer leverage connection profiles and orthonormal clustering to analyze mental disorders?Title: Noncompact, Gauge-Invariant Simulations of U(1), SU(2), and SU(3)\n\nAbstract: We have applied a new noncompact, gauge-invariant, Monte Carlo method to simulate the U(1), SU(2), and SU(3) gauge theories on 8^4 and 12^4 lattices. For U(1) the Creutz ratios of the Wilson loops agree with the exact results for beta > 0.5 after a renormalization of the charge. The SU(2) and SU(3) Creutz ratios robustly display quark confinement at beta = 0.5 and beta = 2, respectively. At much weaker coupling, the SU(2) and SU(3) Creutz ratios agree with perturbation theory after a renormalization of the coupling constant. For SU(3) without quarks, our lattice QCD parameter is Lambda_L = 130 +- 18$ MeV.corpusarxiv |
|
tstamptask_typeretrievaltypechatmodelmixedbread-ai/mxbai-embed-large-v1gen_paramsstartfinishipconv_idebb67aaa6367404fada798faa16238bemodel_namemixedbread-ai/mxbai-embed-large-v1promptcan gravity waves travel faster than light?outputcan gravity waves travel faster than light?Physics Stackexchange\n\nQ: Why can't the speed of gravitational waves be greater than the speed of light if the universe can expand faster than the speed of light? Since the expansion speed of the universe can be greater than the speed of light, why can't gravitational waves, which also uses space as the medium, travel faster than the speed of light?\n\nA: Gravitational waves are solutions to the linearized field equations\n$\\Box h_{\\mu \\nu} = 0,$\nwhere $\\Box$ is the d'Alembertian differential operator.\nThey are of the form\n\\begin{align}\nh_{\\mu \\nu}= \\text{Re}[H_{\\mu \\nu} e^{i k_{\\rho} x^{\\rho}}] , \n\\end{align}\nwhere $H_{\\mu \\nu}$ is just a complex symmetric matrix setting the polarization of the wave and $k_{\\rho}$ is its wave-vector.\nFor the above ansatz to satisfy the equations, we plug it into the equations to get the condition $k_{\\mu} k^{\\mu} =0$. This is just the statement that the wave-vector must be null, meaning the wave propagates at the speed of light.\n"]], "corpus": "stackexchange"} |
|
{"tstamp": 1722305896.3763, "task_type": "retrieval", "type": "chat", "model": "BM25", "gen_params": {}, "start": 1722305894.1942, "finish": 1722305896.3763, "ip": "", "conv_id": "0594d3384acf4283a4656c03b325081a", "model_name": "BM25", "prompt": "can gravity waves travel faster than light?", "output": [["can gravity waves travel faster than light?", "Physics Stackexchange\n\nQ: Why can't fermions be affected by effective gravity in non-linear quantum electrodynamics? Quantum electrodynamics based upon Euler-Heisenberg or Born-Infeld Lagrangians predict photons\nto move according to an effective metric which is dependent on the background electromagnetic\nfield. In other words, photon trajectories are curved in presence of electromagnetic fields,\nmeaning that an effective gravity is acting upon. If part of fermion masses is allegedly of\nelectromagnetic origin, the question why their trajectories are not affected by this\neffective gravity naturally comes to mind.\n\nA: In the presence of a background electromagnetic field, electromagnetic fields travel along a deformed light cone which is smaller than the \. However, charged fermions can still travel faster than electromagnetic waves as long as they are still slower than the \. They emit Cherenkov radiation while doing so. \ncorpusstackexchange |
|
|