Muennighoff
commited on
Commit
•
dca84e9
1
Parent(s):
4d0fb07
Scheduled Commit
Browse files
data/clustering_battle-2cea24b1-39e9-480a-ba22-c617ea05c1fe.jsonl
CHANGED
@@ -4,3 +4,4 @@
|
|
4 |
{"tstamp": 1724164131.8129, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "73c4af80b98d431eba13a3b40ac9b3d7", "0_model_name": "mixedbread-ai/mxbai-embed-large-v1", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "0_ncluster": 3, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "b45cf608bead4124b0d7596b5384345c", "1_model_name": "voyage-multilingual-2", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "1_ncluster": 3, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
5 |
{"tstamp": 1724280294.9014, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "d9b5e5b41abf426181ad9670782d952e", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "d710f7648b854cf793aef2f3a8c661cb", "1_model_name": "nomic-ai/nomic-embed-text-v1.5", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
6 |
{"tstamp": 1724291653.885, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "400fa553f9094ab9b12e6ea1256ec2bc", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "83602d74a2cf4a289b5441845f4e176f", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
|
|
|
4 |
{"tstamp": 1724164131.8129, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "73c4af80b98d431eba13a3b40ac9b3d7", "0_model_name": "mixedbread-ai/mxbai-embed-large-v1", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "0_ncluster": 3, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "b45cf608bead4124b0d7596b5384345c", "1_model_name": "voyage-multilingual-2", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "1_ncluster": 3, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
5 |
{"tstamp": 1724280294.9014, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "d9b5e5b41abf426181ad9670782d952e", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "d710f7648b854cf793aef2f3a8c661cb", "1_model_name": "nomic-ai/nomic-embed-text-v1.5", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
6 |
{"tstamp": 1724291653.885, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "400fa553f9094ab9b12e6ea1256ec2bc", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "83602d74a2cf4a289b5441845f4e176f", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|
7 |
+
{"tstamp": 1724349504.3035, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "f6f2a09e097c42b48b2d7f5dfb6768c8", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["aap kaise ho", "How are you", "I am fine", "Mai theek hu", "mai bhi theek hu", "I am also fine", "Ye college is a great place for studying", "This college is good for studying", "Ye college boht badhiya hai", "Mujhe khana khana hai", "This college is very good place"], "0_ncluster": 2, "0_output": "", "0_ndim": "2D (press for 3D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "67375df8d26e4996b43af1c9447756e0", "1_model_name": "intfloat/multilingual-e5-large-instruct", "1_prompt": ["aap kaise ho", "How are you", "I am fine", "Mai theek hu", "mai bhi theek hu", "I am also fine", "Ye college is a great place for studying", "This college is good for studying", "Ye college boht badhiya hai", "Mujhe khana khana hai", "This college is very good place"], "1_ncluster": 2, "1_output": "", "1_ndim": "2D (press for 3D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
|