{"tstamp": 1722290478.1374, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290465.024, "finish": 1722290478.1374, "ip": "", "conv_id": "d79112da498746938389b45a5b84e894", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290478.1374, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290465.024, "finish": 1722290478.1374, "ip": "", "conv_id": "720ec946a90b46d695438a4a192fdcd7", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290524.2348, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290524.1416, "finish": 1722290524.2348, "ip": "", "conv_id": "6f3a48214683444a95b4ceb5231595dd", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290524.2348, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290524.1416, "finish": 1722290524.2348, "ip": "", "conv_id": "1d048cdb72834337a9ad96af1febb860", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290554.1374, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290554.0398, "finish": 1722290554.1374, "ip": "", "conv_id": "51fcb7dc696e47fab750056889ddfb60", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290554.1374, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290554.0398, "finish": 1722290554.1374, "ip": "", "conv_id": "bcbe316dda8f450aaf9670bc858a4da6", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290571.1363, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290571.0335, "finish": 1722290571.1363, "ip": "", "conv_id": "b5ae0ea351b24c96ad81ae44d36dd5c6", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290571.1363, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290571.0335, "finish": 1722290571.1363, "ip": "", "conv_id": "191608c823344cfb8f01da018539b6d8", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290620.5853, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290620.4897, "finish": 1722290620.5853, "ip": "", "conv_id": "b8d1fa66029045a598b4cbd4175a1e46", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290620.5853, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290620.4897, "finish": 1722290620.5853, "ip": "", "conv_id": "8223abf688b4408fb1e3fd3b2015dfad", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290646.9288, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290646.8443, "finish": 1722290646.9288, "ip": "", "conv_id": "f4754632c6a244cfb7ee042c5897d4d2", "model_name": "GritLM/GritLM-7B", "prompt": ["If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \\\"In Transit\\\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?"], "ncluster": 1, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290646.9288, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290646.8443, "finish": 1722290646.9288, "ip": "", "conv_id": "799d2dabc3504951bdff33bf7db42b13", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \\\"In Transit\\\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?"], "ncluster": 1, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290652.8478, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290652.7528, "finish": 1722290652.8478, "ip": "", "conv_id": "f72228c528e2491d9009b921c9ac6c93", "model_name": "GritLM/GritLM-7B", "prompt": ["If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290652.8478, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290652.7528, "finish": 1722290652.8478, "ip": "", "conv_id": "3079acb29f9b41568d735514a75d299f", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["If someone online buys something off of my Amazon wish list, do they get my full name and address?", "Package \"In Transit\" over a week. No scheduled delivery date, no locations. What's up?", "Can Amazon gift cards replace a debit card?", "Homesick GWS star Cameron McCarthy on road to recovery", "Accidently ordered 2 of an item, how do I only return 1? For free?", "Need help ASAP, someone ordering in my account", "So who's everyone tipping for Round 1?"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290671.4086, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290671.3143, "finish": 1722290671.4086, "ip": "", "conv_id": "f495211e0c9d45258ed86487adc9d3ba", "model_name": "GritLM/GritLM-7B", "prompt": ["which airlines fly from boston to washington dc via other cities", "show me the airlines that fly between toronto and denver", "show me round trip first class tickets from new york to miami", "i'd like the lowest fare from denver to pittsburgh", "show me a list of ground transportation at boston airport", "show me boston ground transportation", "of all airlines which airline has the most arrivals in atlanta", "what ground transportation is available in boston", "i would like your rates between atlanta and boston on september third", "which airlines fly between boston and pittsburgh"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290671.4086, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290671.3143, "finish": 1722290671.4086, "ip": "", "conv_id": "ea6d64889bd34885bc58a71fe02a6238", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["which airlines fly from boston to washington dc via other cities", "show me the airlines that fly between toronto and denver", "show me round trip first class tickets from new york to miami", "i'd like the lowest fare from denver to pittsburgh", "show me a list of ground transportation at boston airport", "show me boston ground transportation", "of all airlines which airline has the most arrivals in atlanta", "what ground transportation is available in boston", "i would like your rates between atlanta and boston on september third", "which airlines fly between boston and pittsburgh"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290807.0476, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722290806.9144, "finish": 1722290807.0476, "ip": "", "conv_id": "ac5f40d0215a4e889b344b472b6f3ec3", "model_name": "GritLM/GritLM-7B", "prompt": ["I, Robot", "The Last Question", "Foundation", "The Restaurant at the End of the Universe", "Life, the Universe and Everything", "The Hitchhiker's Guide to the Galaxy"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722290807.0476, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722290806.9144, "finish": 1722290807.0476, "ip": "", "conv_id": "82bea0fe9b1e47f59d4bd9e18e2640a7", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["I, Robot", "The Last Question", "Foundation", "The Restaurant at the End of the Universe", "Life, the Universe and Everything", "The Hitchhiker's Guide to the Galaxy"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291187.8641, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291187.767, "finish": 1722291187.8641, "ip": "", "conv_id": "91e71d2f824940c788867d0850a4157b", "model_name": "GritLM/GritLM-7B", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine", "Aluminium", "Gallium", "Indium", "Magnesium", "Beryllium", "Calcium"], "ncluster": 4, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291187.8641, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291187.767, "finish": 1722291187.8641, "ip": "", "conv_id": "72066e4706fa4de9a50f564c8f32775f", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine", "Aluminium", "Gallium", "Indium", "Magnesium", "Beryllium", "Calcium"], "ncluster": 4, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291237.1722, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291237.0876, "finish": 1722291237.1722, "ip": "", "conv_id": "d5eb38b0b811499f961a4381160d583a", "model_name": "GritLM/GritLM-7B", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium"], "ncluster": 1, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291237.1722, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291237.0876, "finish": 1722291237.1722, "ip": "", "conv_id": "6b0357db942240ec9ea894db1b6e1804", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium"], "ncluster": 1, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291252.6074, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291252.5087, "finish": 1722291252.6074, "ip": "", "conv_id": "d5eb38b0b811499f961a4381160d583a", "model_name": "GritLM/GritLM-7B", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291252.6074, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291252.5087, "finish": 1722291252.6074, "ip": "", "conv_id": "6b0357db942240ec9ea894db1b6e1804", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291262.8704, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291262.7782, "finish": 1722291262.8704, "ip": "", "conv_id": "4f777885c9f34445aa6373ccf09204d4", "model_name": "GritLM/GritLM-7B", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291262.8704, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291262.7782, "finish": 1722291262.8704, "ip": "", "conv_id": "bca9169e4cb448b2a7d72f933b791298", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["Helium", "Neon", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291300.1237, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291300.0277, "finish": 1722291300.1237, "ip": "", "conv_id": "808f89b0cb0541b397ac5027340916c9", "model_name": "GritLM/GritLM-7B", "prompt": ["Helium", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291300.1237, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291300.0277, "finish": 1722291300.1237, "ip": "", "conv_id": "8257fe3f97d040568e20ced3e928b36d", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["Helium", "Argon", "Xenon", "Lithium", "Sodium", "Potassium", "Fluorine", "Chlorine", "Iodine"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291344.4123, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291344.3162, "finish": 1722291344.4123, "ip": "", "conv_id": "2042533c582049308b4c6b4f4c04305f", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291344.4123, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291344.3162, "finish": 1722291344.4123, "ip": "", "conv_id": "6cfac98b7d934939aedeb2f393dc773a", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291354.8285, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291354.7336, "finish": 1722291354.8285, "ip": "", "conv_id": "8f44e42d378b4e2dbff1a3184b6103d1", "model_name": "GritLM/GritLM-7B", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291354.8285, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291354.7336, "finish": 1722291354.8285, "ip": "", "conv_id": "18739d5906744efd8cf27fc396a00566", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Researchers have found that people who live beyond 105 years tend to have a unique genetic background that makes their bodies more efficient at repairing DNA, according to a new study.", "[D] A Demo from 1993 of 32-year-old Yann LeCun showing off the World's first Convolutional Network for Text Recognition", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with bge & GritLM?"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291545.3209, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291545.225, "finish": 1722291545.3209, "ip": "", "conv_id": "39bf130bdd334613a3059d84ea53394b", "model_name": "GritLM/GritLM-7B", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-pack: Packaged resources to advance general chinese embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Bloom: A 176b-parameter open-access multilingual language model", "Olmo: Accelerating the science of language models", "FinGPT: Large Generative Models for a Small Language"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291545.3209, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291545.225, "finish": 1722291545.3209, "ip": "", "conv_id": "7c3ea3f94dfc4c30bc67900a79547c63", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-pack: Packaged resources to advance general chinese embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Bloom: A 176b-parameter open-access multilingual language model", "Olmo: Accelerating the science of language models", "FinGPT: Large Generative Models for a Small Language"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291645.1745, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291645.0777, "finish": 1722291645.1745, "ip": "", "conv_id": "796815cfe8cf47b192b617b6c5207483", "model_name": "GritLM/GritLM-7B", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-pack: Packaged resources to advance general chinese embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291645.1745, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291645.0777, "finish": 1722291645.1745, "ip": "", "conv_id": "55e24e0730a54d35af08d2b171164a62", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-pack: Packaged resources to advance general chinese embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291677.7153, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291677.6204, "finish": 1722291677.7153, "ip": "", "conv_id": "8fecaacd043445bb8c502c21fbc2904e", "model_name": "GritLM/GritLM-7B", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-Pack: Packaged Resources To Advance General Chinese Embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291677.7153, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291677.6204, "finish": 1722291677.7153, "ip": "", "conv_id": "feaf1621fd304f57b5b3d50f5e85eb75", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "C-Pack: Packaged Resources To Advance General Chinese Embedding", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291721.7903, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291721.6928, "finish": 1722291721.7903, "ip": "", "conv_id": "bf31da2ca5b049bd9d082a21e26d8a26", "model_name": "GritLM/GritLM-7B", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "Generative representational instruction tuning", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291721.7903, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291721.6928, "finish": 1722291721.7903, "ip": "", "conv_id": "11d038fb4ecf478fbd8f7d8562325713", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["SGPT: GPT sentence embeddings for semantic search", "MTEB: Massive text embedding benchmark", "Generative representational instruction tuning", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "Deep Residual Learning for Image Recognition", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291843.4723, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291843.3831, "finish": 1722291843.4723, "ip": "", "conv_id": "72f03b4aecae4106b1a30956e910fc5e", "model_name": "GritLM/GritLM-7B", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291843.4723, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291843.3831, "finish": 1722291843.4723, "ip": "", "conv_id": "8c887d44d278472aa676f034d8c4736d", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291915.271, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722291915.1809, "finish": 1722291915.271, "ip": "", "conv_id": "4dd1657267504ebba4f3a215248029a0", "model_name": "GritLM/GritLM-7B", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "Deep Residual Learning for Image Recognition"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722291915.271, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722291915.1809, "finish": 1722291915.271, "ip": "", "conv_id": "401f530ea2e64235a906e5e8f9c6b9c5", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "Deep Residual Learning for Image Recognition"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722292121.8444, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722292121.7878, "finish": 1722292121.8444, "ip": "", "conv_id": "c1a4ede6b5384186851ac40d11025d9a", "model_name": "GritLM/GritLM-7B", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "Deep Residual Learning for Image Recognition"], "ncluster": 3, "output": "", "ndim": "3D", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722292135.9438, "task_type": "clustering", "type": "chat", "model": "GritLM/GritLM-7B", "gen_params": {}, "start": 1722292135.8534, "finish": 1722292135.9438, "ip": "", "conv_id": "6c70be256d2f432086502da2ff9043db", "model_name": "GritLM/GritLM-7B", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "Deep Residual Learning for Image Recognition"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"} {"tstamp": 1722292135.9438, "task_type": "clustering", "type": "chat", "model": "BAAI/bge-large-en-v1.5", "gen_params": {}, "start": 1722292135.8534, "finish": 1722292135.9438, "ip": "", "conv_id": "9408c6f89a3740df8d96a0f34f4a82a2", "model_name": "BAAI/bge-large-en-v1.5", "prompt": ["MTEB: Massive text embedding benchmark", "BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval", "The Scandinavian Embedding Benchmarks: Comprehensive Assessment of Multilingual and Monolingual Text Embedding", "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", "Deep Residual Learning for Image Recognition"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}