Datasets:
Tasks:
Text Classification
Size:
100K - 1M
import json | |
import datasets | |
_DESCRIPTION = "MTOP: Multilingual Task-Oriented Semantic Parsing" | |
_LANGUAGES = ["en", "de", "es", "fr", "hi", "th"] | |
URL = "" # https://huggingface.co/datasets/mteb/mtop/resolve/main/" | |
_URLs = { | |
split: { | |
"train": URL + f"{split}/train.jsonl", | |
"test": URL + f"{split}/test.jsonl", | |
"validation": URL + f"{split}/validation.jsonl", | |
} | |
for split in _LANGUAGES | |
} | |
class MTOP(datasets.GeneratorBasedBuilder): | |
"""MTOP Dataset.""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name=name, description=f"This part of my dataset covers {name} part of MTOP Dataset.",) | |
for name in _LANGUAGES | |
] | |
DEFAULT_CONFIG_NAME = "en" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int64"), | |
"text": datasets.Value("string"), | |
"label": datasets.Value("int32"), | |
"label_text": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
my_urls = _URLs[self.config.name] | |
data_dir = dl_manager.download_and_extract(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"text_path": data_dir["train"]}, | |
), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"text_path": data_dir["validation"]},), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"text_path": data_dir["test"]}, | |
), | |
] | |
def _generate_examples(self, text_path): | |
"""Yields examples.""" | |
with open(text_path, encoding="utf-8") as f: | |
texts = f.readlines() | |
for i, text in enumerate(texts): | |
yield i, json.loads(text) |