fix: Standartize results folders (#34)
Browse files* before add instruct
* udpate paths
* fix test
This view is limited to 50 files because it contains too many changes. Β
See raw diff
- paths.json +0 -0
- results.py +504 -251
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AFQMC.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ATEC.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonCounterfactualClassification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonPolarityClassification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonReviewsClassification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArguAna.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArxivClusteringP2P.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArxivClusteringS2S.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AskUbuntuDupQuestions.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BIOSSES.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BQ.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/Banking77Classification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BiorxivClusteringP2P.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BiorxivClusteringS2S.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BrightRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CLSClusteringP2P.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CLSClusteringS2S.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CMedQAv1.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CMedQAv2.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackAndroidRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackEnglishRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackGamingRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackGisRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackMathematicaRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackPhysicsRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackProgrammersRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackStatsRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackTexRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackUnixRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackWebmastersRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackWordpressRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ClimateFEVER.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CmedqaRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/Cmnli.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CovidRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/DBPedia.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/DuRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/EcomRetrieval.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/EmotionClassification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/FEVER.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/FiQA2018.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/HotpotQA.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/IFlyTek.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ImdbClassification.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/JDReview.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/LCQMC.json +0 -0
- results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/MMarcoReranking.json +0 -0
paths.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
results.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
"""MTEB Results"""
|
|
|
2 |
from __future__ import annotations
|
3 |
|
4 |
import json
|
@@ -24,7 +25,205 @@ _DESCRIPTION = """Results on MTEB"""
|
|
24 |
|
25 |
URL = "https://huggingface.co/datasets/mteb/results/resolve/main/paths.json"
|
26 |
VERSION = datasets.Version("1.0.1")
|
27 |
-
EVAL_LANGS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# v_measures key is somehow present in voyage-2-law results and is a list
|
30 |
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold", "v_measures", "scores_per_experiment"]
|
@@ -32,9 +231,35 @@ SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold", "v_measures",
|
|
32 |
# Use "train" split instead
|
33 |
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
|
34 |
# Use "validation" split instead
|
35 |
-
VALIDATION_SPLIT = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Use "dev" split instead
|
37 |
-
DEV_SPLIT = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Use "test.full" split
|
39 |
TESTFULL_SPLIT = ["OpusparcusPC"]
|
40 |
# Use "standard" split
|
@@ -43,219 +268,237 @@ STANDARD_SPLIT = ["BrightRetrieval"]
|
|
43 |
DEVTEST_SPLIT = ["FloresBitextMining"]
|
44 |
|
45 |
TEST_AVG_SPLIT = {
|
46 |
-
"LEMBNeedleRetrieval": [
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
MODELS = [
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"
|
82 |
-
"
|
83 |
-
"
|
84 |
-
"
|
85 |
-
"
|
86 |
-
"
|
87 |
-
"
|
88 |
-
"
|
89 |
-
"
|
90 |
-
"
|
91 |
-
"
|
92 |
-
"
|
93 |
-
"
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"
|
97 |
-
"
|
98 |
-
"
|
99 |
-
"
|
100 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
"bm25",
|
102 |
"bm25s",
|
103 |
-
"
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"
|
110 |
-
"
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"
|
114 |
-
"
|
115 |
-
"
|
116 |
-
"
|
117 |
-
"
|
118 |
-
"
|
119 |
-
"
|
120 |
-
"
|
121 |
-
"
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"
|
155 |
-
"
|
156 |
-
"
|
157 |
-
"
|
158 |
-
"
|
159 |
-
"
|
160 |
-
"
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"
|
166 |
-
"
|
167 |
-
"
|
168 |
-
"
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
-
"
|
173 |
-
"
|
174 |
-
"
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
178 |
-
"
|
179 |
-
"
|
180 |
-
"
|
181 |
-
"
|
182 |
-
"
|
183 |
-
"
|
184 |
-
"
|
185 |
-
"
|
186 |
-
"
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"
|
194 |
-
"
|
195 |
-
"
|
196 |
-
"
|
197 |
-
"
|
198 |
-
"
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
"
|
213 |
-
"
|
214 |
-
"
|
215 |
-
"
|
216 |
-
"
|
217 |
-
"
|
218 |
-
"
|
219 |
-
"
|
220 |
-
"
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
225 |
-
"
|
226 |
-
"
|
227 |
-
"
|
228 |
-
"
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"
|
232 |
-
"
|
233 |
-
"
|
234 |
-
"
|
235 |
-
"
|
236 |
-
"
|
237 |
-
"
|
238 |
-
"universal-sentence-encoder-multilingual-large-3",
|
239 |
-
"unsup-simcse-bert-base-uncased",
|
240 |
-
"use-cmlm-multilingual",
|
241 |
-
"voyage-2",
|
242 |
-
"voyage-code-2",
|
243 |
-
"voyage-large-2-instruct",
|
244 |
-
"voyage-law-2",
|
245 |
-
"voyage-lite-01-instruct",
|
246 |
-
"voyage-lite-02-instruct",
|
247 |
-
"voyage-multilingual-2",
|
248 |
-
"xlm-roberta-base",
|
249 |
-
"xlm-roberta-large",
|
250 |
-
"deberta-v1-base",
|
251 |
-
"USER-bge-m3",
|
252 |
-
"USER-base",
|
253 |
-
"rubert-tiny-turbo",
|
254 |
-
"LaBSE-ru-turbo",
|
255 |
-
"distilrubert-small-cased-conversational",
|
256 |
-
"rubert-base-cased",
|
257 |
-
"rubert-base-cased-sentence",
|
258 |
-
"LaBSE-en-ru",
|
259 |
]
|
260 |
|
261 |
|
@@ -269,6 +512,7 @@ def get_model_for_current_dir(dir_name: str) -> str | None:
|
|
269 |
# Needs to be run whenever new files are added
|
270 |
def get_paths():
|
271 |
import collections, json, os
|
|
|
272 |
files = collections.defaultdict(list)
|
273 |
for model_dir in os.listdir("results"):
|
274 |
results_model_dir = os.path.join("results", model_dir)
|
@@ -283,7 +527,9 @@ def get_paths():
|
|
283 |
if not os.path.isdir(os.path.join(results_model_dir, revision_folder)):
|
284 |
continue
|
285 |
for res_file in os.listdir(os.path.join(results_model_dir, revision_folder)):
|
286 |
-
if (res_file.endswith(".json")) and not(
|
|
|
|
|
287 |
results_model_file = os.path.join(results_model_dir, revision_folder, res_file)
|
288 |
files[model_name].append(results_model_file)
|
289 |
with open("paths.json", "w") as f:
|
@@ -327,12 +573,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
327 |
with open(path_file) as f:
|
328 |
files = json.load(f)
|
329 |
downloaded_files = dl_manager.download_and_extract(files[self.config.name])
|
330 |
-
return [
|
331 |
-
datasets.SplitGenerator(
|
332 |
-
name=datasets.Split.TEST,
|
333 |
-
gen_kwargs={'filepath': downloaded_files}
|
334 |
-
)
|
335 |
-
]
|
336 |
|
337 |
def _generate_examples(self, filepath):
|
338 |
"""This function returns the examples in the raw (text) form."""
|
@@ -356,7 +597,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
356 |
split = "dev"
|
357 |
elif (ds_name in TESTFULL_SPLIT) and ("test.full" in res_dict):
|
358 |
split = "test.full"
|
359 |
-
elif
|
360 |
split = []
|
361 |
if "standard" in res_dict:
|
362 |
split += ["standard"]
|
@@ -364,7 +605,7 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
364 |
split += ["long"]
|
365 |
elif (ds_name in DEVTEST_SPLIT) and ("devtest" in res_dict):
|
366 |
split = "devtest"
|
367 |
-
elif
|
368 |
# Average splits
|
369 |
res_dict = {}
|
370 |
for split in TEST_AVG_SPLIT[ds_name]:
|
@@ -385,7 +626,8 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
385 |
for k, v in res_dict[split][0].items():
|
386 |
if k in ["hf_subset", "languages"]:
|
387 |
res_dict[k] = v
|
388 |
-
if not isinstance(v, float):
|
|
|
389 |
v /= len(TEST_AVG_SPLIT[ds_name])
|
390 |
if k not in res_dict:
|
391 |
res_dict[k] = v
|
@@ -414,41 +656,48 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
414 |
if not lang:
|
415 |
lang = subset
|
416 |
for metric, score in res.items():
|
417 |
-
if metric in SKIP_KEYS:
|
|
|
418 |
if isinstance(score, dict):
|
419 |
# Legacy format with e.g. {cosine: {spearman: ...}}
|
420 |
# Now it is {cosine_spearman: ...}
|
421 |
for k, v in score.items():
|
422 |
if not isinstance(v, float):
|
423 |
-
print(f
|
424 |
continue
|
425 |
-
if metric in SKIP_KEYS:
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
|
|
|
|
|
|
433 |
else:
|
434 |
if not isinstance(score, float):
|
435 |
-
print(f
|
436 |
continue
|
437 |
-
out.append(
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
|
|
|
|
445 |
|
446 |
### Old MTEB format ###
|
447 |
else:
|
448 |
is_multilingual = any(x in res_dict for x in EVAL_LANGS)
|
449 |
langs = res_dict.keys() if is_multilingual else ["en"]
|
450 |
for lang in langs:
|
451 |
-
if lang in SKIP_KEYS:
|
|
|
452 |
test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
|
453 |
subset = test_result_lang.pop("hf_subset", "")
|
454 |
if subset == "" and is_multilingual:
|
@@ -457,16 +706,20 @@ class MTEBResults(datasets.GeneratorBasedBuilder):
|
|
457 |
if not isinstance(score, dict):
|
458 |
score = {metric: score}
|
459 |
for sub_metric, sub_score in score.items():
|
460 |
-
if any(x in sub_metric for x in SKIP_KEYS):
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
|
|
470 |
for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
|
471 |
yield idx, row
|
472 |
|
|
|
1 |
"""MTEB Results"""
|
2 |
+
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import json
|
|
|
25 |
|
26 |
URL = "https://huggingface.co/datasets/mteb/results/resolve/main/paths.json"
|
27 |
VERSION = datasets.Version("1.0.1")
|
28 |
+
EVAL_LANGS = [
|
29 |
+
"af",
|
30 |
+
"afr-eng",
|
31 |
+
"am",
|
32 |
+
"amh",
|
33 |
+
"amh-eng",
|
34 |
+
"ang-eng",
|
35 |
+
"ar",
|
36 |
+
"ar-ar",
|
37 |
+
"ara-eng",
|
38 |
+
"arq-eng",
|
39 |
+
"arz-eng",
|
40 |
+
"ast-eng",
|
41 |
+
"awa-eng",
|
42 |
+
"az",
|
43 |
+
"aze-eng",
|
44 |
+
"bel-eng",
|
45 |
+
"ben-eng",
|
46 |
+
"ber-eng",
|
47 |
+
"bn",
|
48 |
+
"bos-eng",
|
49 |
+
"bre-eng",
|
50 |
+
"bul-eng",
|
51 |
+
"cat-eng",
|
52 |
+
"cbk-eng",
|
53 |
+
"ceb-eng",
|
54 |
+
"ces-eng",
|
55 |
+
"cha-eng",
|
56 |
+
"cmn-eng",
|
57 |
+
"cor-eng",
|
58 |
+
"csb-eng",
|
59 |
+
"cy",
|
60 |
+
"cym-eng",
|
61 |
+
"da",
|
62 |
+
"dan-eng",
|
63 |
+
"de",
|
64 |
+
"de-fr",
|
65 |
+
"de-pl",
|
66 |
+
"deu-eng",
|
67 |
+
"dsb-eng",
|
68 |
+
"dtp-eng",
|
69 |
+
"el",
|
70 |
+
"ell-eng",
|
71 |
+
"en",
|
72 |
+
"en-ar",
|
73 |
+
"en-de",
|
74 |
+
"en-en",
|
75 |
+
"en-tr",
|
76 |
+
"eng",
|
77 |
+
"epo-eng",
|
78 |
+
"es",
|
79 |
+
"es-en",
|
80 |
+
"es-es",
|
81 |
+
"es-it",
|
82 |
+
"est-eng",
|
83 |
+
"eus-eng",
|
84 |
+
"fa",
|
85 |
+
"fao-eng",
|
86 |
+
"fi",
|
87 |
+
"fin-eng",
|
88 |
+
"fr",
|
89 |
+
"fr-en",
|
90 |
+
"fr-pl",
|
91 |
+
"fra",
|
92 |
+
"fra-eng",
|
93 |
+
"fry-eng",
|
94 |
+
"gla-eng",
|
95 |
+
"gle-eng",
|
96 |
+
"glg-eng",
|
97 |
+
"gsw-eng",
|
98 |
+
"hau",
|
99 |
+
"he",
|
100 |
+
"heb-eng",
|
101 |
+
"hi",
|
102 |
+
"hin-eng",
|
103 |
+
"hrv-eng",
|
104 |
+
"hsb-eng",
|
105 |
+
"hu",
|
106 |
+
"hun-eng",
|
107 |
+
"hy",
|
108 |
+
"hye-eng",
|
109 |
+
"ibo",
|
110 |
+
"id",
|
111 |
+
"ido-eng",
|
112 |
+
"ile-eng",
|
113 |
+
"ina-eng",
|
114 |
+
"ind-eng",
|
115 |
+
"is",
|
116 |
+
"isl-eng",
|
117 |
+
"it",
|
118 |
+
"it-en",
|
119 |
+
"ita-eng",
|
120 |
+
"ja",
|
121 |
+
"jav-eng",
|
122 |
+
"jpn-eng",
|
123 |
+
"jv",
|
124 |
+
"ka",
|
125 |
+
"kab-eng",
|
126 |
+
"kat-eng",
|
127 |
+
"kaz-eng",
|
128 |
+
"khm-eng",
|
129 |
+
"km",
|
130 |
+
"kn",
|
131 |
+
"ko",
|
132 |
+
"ko-ko",
|
133 |
+
"kor-eng",
|
134 |
+
"kur-eng",
|
135 |
+
"kzj-eng",
|
136 |
+
"lat-eng",
|
137 |
+
"lfn-eng",
|
138 |
+
"lit-eng",
|
139 |
+
"lin",
|
140 |
+
"lug",
|
141 |
+
"lv",
|
142 |
+
"lvs-eng",
|
143 |
+
"mal-eng",
|
144 |
+
"mar-eng",
|
145 |
+
"max-eng",
|
146 |
+
"mhr-eng",
|
147 |
+
"mkd-eng",
|
148 |
+
"ml",
|
149 |
+
"mn",
|
150 |
+
"mon-eng",
|
151 |
+
"ms",
|
152 |
+
"my",
|
153 |
+
"nb",
|
154 |
+
"nds-eng",
|
155 |
+
"nl",
|
156 |
+
"nl-ende-en",
|
157 |
+
"nld-eng",
|
158 |
+
"nno-eng",
|
159 |
+
"nob-eng",
|
160 |
+
"nov-eng",
|
161 |
+
"oci-eng",
|
162 |
+
"orm",
|
163 |
+
"orv-eng",
|
164 |
+
"pam-eng",
|
165 |
+
"pcm",
|
166 |
+
"pes-eng",
|
167 |
+
"pl",
|
168 |
+
"pl-en",
|
169 |
+
"pms-eng",
|
170 |
+
"pol-eng",
|
171 |
+
"por-eng",
|
172 |
+
"pt",
|
173 |
+
"ro",
|
174 |
+
"ron-eng",
|
175 |
+
"ru",
|
176 |
+
"run",
|
177 |
+
"rus-eng",
|
178 |
+
"sl",
|
179 |
+
"slk-eng",
|
180 |
+
"slv-eng",
|
181 |
+
"spa-eng",
|
182 |
+
"sna",
|
183 |
+
"som",
|
184 |
+
"sq",
|
185 |
+
"sqi-eng",
|
186 |
+
"srp-eng",
|
187 |
+
"sv",
|
188 |
+
"sw",
|
189 |
+
"swa",
|
190 |
+
"swe-eng",
|
191 |
+
"swg-eng",
|
192 |
+
"swh-eng",
|
193 |
+
"ta",
|
194 |
+
"tam-eng",
|
195 |
+
"tat-eng",
|
196 |
+
"te",
|
197 |
+
"tel-eng",
|
198 |
+
"tgl-eng",
|
199 |
+
"th",
|
200 |
+
"tha-eng",
|
201 |
+
"tir",
|
202 |
+
"tl",
|
203 |
+
"tr",
|
204 |
+
"tuk-eng",
|
205 |
+
"tur-eng",
|
206 |
+
"tzl-eng",
|
207 |
+
"uig-eng",
|
208 |
+
"ukr-eng",
|
209 |
+
"ur",
|
210 |
+
"urd-eng",
|
211 |
+
"uzb-eng",
|
212 |
+
"vi",
|
213 |
+
"vie-eng",
|
214 |
+
"war-eng",
|
215 |
+
"wuu-eng",
|
216 |
+
"xho",
|
217 |
+
"xho-eng",
|
218 |
+
"yid-eng",
|
219 |
+
"yor",
|
220 |
+
"yue-eng",
|
221 |
+
"zh",
|
222 |
+
"zh-CN",
|
223 |
+
"zh-TW",
|
224 |
+
"zh-en",
|
225 |
+
"zsm-eng",
|
226 |
+
]
|
227 |
|
228 |
# v_measures key is somehow present in voyage-2-law results and is a list
|
229 |
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold", "v_measures", "scores_per_experiment"]
|
|
|
231 |
# Use "train" split instead
|
232 |
TRAIN_SPLIT = ["DanishPoliticalCommentsClassification"]
|
233 |
# Use "validation" split instead
|
234 |
+
VALIDATION_SPLIT = [
|
235 |
+
"AFQMC",
|
236 |
+
"Cmnli",
|
237 |
+
"IFlyTek",
|
238 |
+
"LEMBSummScreenFDRetrieval",
|
239 |
+
"MSMARCO",
|
240 |
+
"MSMARCO-PL",
|
241 |
+
"MultilingualSentiment",
|
242 |
+
"Ocnli",
|
243 |
+
"TNews",
|
244 |
+
]
|
245 |
# Use "dev" split instead
|
246 |
+
DEV_SPLIT = [
|
247 |
+
"CmedqaRetrieval",
|
248 |
+
"CovidRetrieval",
|
249 |
+
"DuRetrieval",
|
250 |
+
"EcomRetrieval",
|
251 |
+
"MedicalRetrieval",
|
252 |
+
"MMarcoReranking",
|
253 |
+
"MMarcoRetrieval",
|
254 |
+
"MSMARCO",
|
255 |
+
"MSMARCO-PL",
|
256 |
+
"T2Reranking",
|
257 |
+
"T2Retrieval",
|
258 |
+
"VideoRetrieval",
|
259 |
+
"TERRa",
|
260 |
+
"MIRACLReranking",
|
261 |
+
"MIRACLRetrieval",
|
262 |
+
]
|
263 |
# Use "test.full" split
|
264 |
TESTFULL_SPLIT = ["OpusparcusPC"]
|
265 |
# Use "standard" split
|
|
|
268 |
DEVTEST_SPLIT = ["FloresBitextMining"]
|
269 |
|
270 |
TEST_AVG_SPLIT = {
|
271 |
+
"LEMBNeedleRetrieval": [
|
272 |
+
"test_256",
|
273 |
+
"test_512",
|
274 |
+
"test_1024",
|
275 |
+
"test_2048",
|
276 |
+
"test_4096",
|
277 |
+
"test_8192",
|
278 |
+
"test_16384",
|
279 |
+
"test_32768",
|
280 |
+
],
|
281 |
+
"LEMBPasskeyRetrieval": [
|
282 |
+
"test_256",
|
283 |
+
"test_512",
|
284 |
+
"test_1024",
|
285 |
+
"test_2048",
|
286 |
+
"test_4096",
|
287 |
+
"test_8192",
|
288 |
+
"test_16384",
|
289 |
+
"test_32768",
|
290 |
+
],
|
291 |
}
|
292 |
|
293 |
MODELS = [
|
294 |
+
"Alibaba-NLP__gte-Qwen1.5-7B-instruct",
|
295 |
+
"Alibaba-NLP__gte-Qwen2-7B-instruct",
|
296 |
+
"BAAI__bge-base-en",
|
297 |
+
"BAAI__bge-base-en-v1.5",
|
298 |
+
"BAAI__bge-base-en-v1.5-instruct",
|
299 |
+
"BAAI__bge-base-zh",
|
300 |
+
"BAAI__bge-base-zh-v1.5",
|
301 |
+
"BAAI__bge-large-en",
|
302 |
+
"BAAI__bge-large-en-v1.5",
|
303 |
+
"BAAI__bge-large-en-v1.5-instruct",
|
304 |
+
"BAAI__bge-large-zh",
|
305 |
+
"BAAI__bge-large-zh-noinstruct",
|
306 |
+
"BAAI__bge-large-zh-v1.5",
|
307 |
+
"BAAI__bge-m3",
|
308 |
+
"BAAI__bge-m3-instruct",
|
309 |
+
"BAAI__bge-small-en-v1.5",
|
310 |
+
"BAAI__bge-small-en-v1.5-instruct",
|
311 |
+
"BAAI__bge-small-zh",
|
312 |
+
"BAAI__bge-small-zh-v1.5",
|
313 |
+
"Cohere__Cohere-embed-english-v3.0",
|
314 |
+
"Cohere__Cohere-embed-english-v3.0-instruct",
|
315 |
+
"Cohere__Cohere-embed-multilingual-light-v3.0",
|
316 |
+
"Cohere__Cohere-embed-multilingual-v3.0",
|
317 |
+
"DeepPavlov__distilrubert-small-cased-conversational",
|
318 |
+
"DeepPavlov__rubert-base-cased",
|
319 |
+
"DeepPavlov__rubert-base-cased-sentence",
|
320 |
+
"FacebookAI__xlm-roberta-base",
|
321 |
+
"FacebookAI__xlm-roberta-large",
|
322 |
+
"Geotrend__bert-base-10lang-cased",
|
323 |
+
"Geotrend__bert-base-15lang-cased",
|
324 |
+
"Geotrend__bert-base-25lang-cased",
|
325 |
+
"Geotrend__distilbert-base-25lang-cased",
|
326 |
+
"Geotrend__distilbert-base-en-fr-cased",
|
327 |
+
"Geotrend__distilbert-base-en-fr-es-pt-it-cased",
|
328 |
+
"Geotrend__distilbert-base-fr-cased",
|
329 |
+
"GritLM__GritLM-7B",
|
330 |
+
"GritLM__GritLM-7B-noinstruct",
|
331 |
+
"KBLab__electra-small-swedish-cased-discriminator",
|
332 |
+
"KBLab__sentence-bert-swedish-cased",
|
333 |
+
"KB__bert-base-swedish-cased",
|
334 |
+
"McGill-NLP__LLM2Vec-Llama-2-7b-chat-hf-mntp-supervised",
|
335 |
+
"McGill-NLP__LLM2Vec-Llama-2-unsupervised",
|
336 |
+
"McGill-NLP__LLM2Vec-Meta-Llama-3-supervised",
|
337 |
+
"McGill-NLP__LLM2Vec-Meta-Llama-3-unsupervised",
|
338 |
+
"McGill-NLP__LLM2Vec-Mistral-supervised",
|
339 |
+
"McGill-NLP__LLM2Vec-Mistral-unsupervised",
|
340 |
+
"McGill-NLP__LLM2Vec-Sheared-Llama-supervised",
|
341 |
+
"McGill-NLP__LLM2Vec-Sheared-Llama-unsupervised",
|
342 |
+
"Muennighoff__SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
|
343 |
+
"Muennighoff__SGPT-125M-weightedmean-msmarco-specb-bitfit",
|
344 |
+
"Muennighoff__SGPT-125M-weightedmean-msmarco-specb-bitfit-doc",
|
345 |
+
"Muennighoff__SGPT-125M-weightedmean-msmarco-specb-bitfit-que",
|
346 |
+
"Muennighoff__SGPT-125M-weightedmean-nli-bitfit",
|
347 |
+
"Muennighoff__SGPT-2.7B-weightedmean-msmarco-specb-bitfit",
|
348 |
+
"Muennighoff__SGPT-5.8B-weightedmean-msmarco-specb-bitfit",
|
349 |
+
"Muennighoff__SGPT-5.8B-weightedmean-msmarco-specb-bitfit-que",
|
350 |
+
"Muennighoff__SGPT-5.8B-weightedmean-nli-bitfit",
|
351 |
+
"NbAiLab__nb-bert-base",
|
352 |
+
"NbAiLab__nb-bert-large",
|
353 |
+
"Salesforce__SFR-Embedding-Mistral",
|
354 |
+
"T-Systems-onsite__cross-en-de-roberta-sentence-transformer",
|
355 |
+
"Wissam42__sentence-croissant-llm-base",
|
356 |
+
"ai-forever__sbert_large_mt_nlu_ru",
|
357 |
+
"ai-forever__sbert_large_nlu_ru",
|
358 |
+
"aliyun__OpenSearch-text-hybrid",
|
359 |
+
"almanach__camembert-base",
|
360 |
+
"almanach__camembert-large",
|
361 |
+
"amazon__titan-embed-text-v1",
|
362 |
+
"baichuan-ai__text-embedding",
|
363 |
+
"bigscience-data__sgpt-bloom-1b7-nli",
|
364 |
+
"bigscience-data__sgpt-bloom-7b1-msmarco",
|
365 |
"bm25",
|
366 |
"bm25s",
|
367 |
+
"castorini__monobert-large-msmarco",
|
368 |
+
"castorini__monot5-3b-msmarco-10k",
|
369 |
+
"castorini__monot5-base-msmarco-10k",
|
370 |
+
"chcaa__dfm-encoder-large-v1",
|
371 |
+
"cointegrated__LaBSE-en-ru",
|
372 |
+
"cointegrated__rubert-tiny",
|
373 |
+
"cointegrated__rubert-tiny2",
|
374 |
+
"dangvantuan__sentence-camembert-base",
|
375 |
+
"dangvantuan__sentence-camembert-large",
|
376 |
+
"deepfile__embedder-100p",
|
377 |
+
"deepset__gbert-base",
|
378 |
+
"deepset__gbert-large",
|
379 |
+
"deepset__gelectra-base",
|
380 |
+
"deepset__gelectra-large",
|
381 |
+
"deepvk__USER-base",
|
382 |
+
"deepvk__USER-bge-m3",
|
383 |
+
"deepvk__deberta-v1-base",
|
384 |
+
"distilbert__distilbert-base-uncased",
|
385 |
+
"dwzhu__e5-base-4k",
|
386 |
+
"elastic__elser-v2",
|
387 |
+
"facebook__contriever",
|
388 |
+
"facebook__contriever-instruct",
|
389 |
+
"facebook__dpr-ctx_encoder-multiset-base",
|
390 |
+
"facebook__dragon-plus-context-encoder",
|
391 |
+
"facebook__tart-full-flan-t5-xl",
|
392 |
+
"facebookresearch__LASER2",
|
393 |
+
"facebookresearch__dragon-plus",
|
394 |
+
"facebookresearch__dragon-plus-instruct",
|
395 |
+
"flaubert__flaubert_base_cased",
|
396 |
+
"flaubert__flaubert_base_uncased",
|
397 |
+
"flaubert__flaubert_large_cased",
|
398 |
+
"google-bert__bert-base-multilingual-cased",
|
399 |
+
"google-bert__bert-base-multilingual-uncased",
|
400 |
+
"google-bert__bert-base-uncased",
|
401 |
+
"google-gecko__text-embedding-preview-0409",
|
402 |
+
"google-gecko__text-embedding-preview-0409-256",
|
403 |
+
"google__flan-t5-base",
|
404 |
+
"google__flan-t5-large",
|
405 |
+
"hkunlp__instructor-base",
|
406 |
+
"hkunlp__instructor-large",
|
407 |
+
"hkunlp__instructor-xl",
|
408 |
+
"intfloat__e5-base",
|
409 |
+
"intfloat__e5-base-v2",
|
410 |
+
"intfloat__e5-large",
|
411 |
+
"intfloat__e5-large-v2",
|
412 |
+
"intfloat__e5-mistral-7b-instruct",
|
413 |
+
"intfloat__e5-mistral-7b-instruct-noinstruct",
|
414 |
+
"intfloat__e5-small",
|
415 |
+
"intfloat__e5-small-v2",
|
416 |
+
"intfloat__multilingual-e5-base",
|
417 |
+
"intfloat__multilingual-e5-large",
|
418 |
+
"intfloat__multilingual-e5-large-instruct",
|
419 |
+
"intfloat__multilingual-e5-small",
|
420 |
+
"ipipan__herbert-base-retrieval-v2",
|
421 |
+
"ipipan__silver-retriever-base-v1",
|
422 |
+
"izhx__udever-bloom-1b1",
|
423 |
+
"izhx__udever-bloom-560m",
|
424 |
+
"jhu-clsp__FollowIR-7B",
|
425 |
+
"jinaai__jina-embeddings-v2-base-en",
|
426 |
+
"jonfd__electra-small-nordic",
|
427 |
+
"ltg__norbert3-base",
|
428 |
+
"ltg__norbert3-large",
|
429 |
+
"meta-llama__llama-2-7b-chat",
|
430 |
+
"mistral__mistral-embed",
|
431 |
+
"mistralai__mistral-7b-instruct-v0.2",
|
432 |
+
"mixedbread-ai__mxbai-embed-large-v1",
|
433 |
+
"moka-ai__m3e-base",
|
434 |
+
"moka-ai__m3e-large",
|
435 |
+
"nomic-ai__nomic-embed-text-v1",
|
436 |
+
"nomic-ai__nomic-embed-text-v1.5-128",
|
437 |
+
"nomic-ai__nomic-embed-text-v1.5-256",
|
438 |
+
"nomic-ai__nomic-embed-text-v1.5-512",
|
439 |
+
"nomic-ai__nomic-embed-text-v1.5-64",
|
440 |
+
"nthakur__contriever-base-msmarco",
|
441 |
+
"openai__text-embedding-3-large",
|
442 |
+
"openai__text-embedding-3-large-256",
|
443 |
+
"openai__text-embedding-3-large-instruct",
|
444 |
+
"openai__text-embedding-3-small-instruct",
|
445 |
+
"openai__text-embedding-ada-002",
|
446 |
+
"openai__text-embedding-ada-002-instruct",
|
447 |
+
"openai__text-search-ada-001",
|
448 |
+
"openai__text-search-ada-doc-001",
|
449 |
+
"openai__text-search-babbage-001",
|
450 |
+
"openai__text-search-curie-001",
|
451 |
+
"openai__text-search-davinci-001",
|
452 |
+
"openai__text-similarity-ada-001",
|
453 |
+
"openai__text-similarity-babbage-001",
|
454 |
+
"openai__text-similarity-curie-001",
|
455 |
+
"openai__text-similarity-davinci-001",
|
456 |
+
"openai__text-embedding-3-small",
|
457 |
+
"orionweller__tart-dual-contriever-msmarco",
|
458 |
+
"princeton-nlp__sup-simcse-bert-base-uncased",
|
459 |
+
"princeton-nlp__unsup-simcse-bert-base-uncased",
|
460 |
+
"sdadas__st-polish-paraphrase-from-distilroberta",
|
461 |
+
"sdadas__st-polish-paraphrase-from-mpnet",
|
462 |
+
"sentence-transformers__LaBSE",
|
463 |
+
"sentence-transformers__all-MiniLM-L12-v2",
|
464 |
+
"sentence-transformers__all-MiniLM-L6-v2",
|
465 |
+
"sentence-transformers__all-MiniLM-L6-v2-instruct",
|
466 |
+
"sentence-transformers__all-mpnet-base-v2",
|
467 |
+
"sentence-transformers__all-mpnet-base-v2-instruct",
|
468 |
+
"sentence-transformers__allenai-specter",
|
469 |
+
"sentence-transformers__average_word_embeddings_glove.6B.300d",
|
470 |
+
"sentence-transformers__average_word_embeddings_komninos",
|
471 |
+
"sentence-transformers__distiluse-base-multilingual-cased-v2",
|
472 |
+
"sentence-transformers__gtr-t5-base",
|
473 |
+
"sentence-transformers__gtr-t5-large",
|
474 |
+
"sentence-transformers__gtr-t5-xl",
|
475 |
+
"sentence-transformers__gtr-t5-xxl",
|
476 |
+
"sentence-transformers__msmarco-bert-co-condensor",
|
477 |
+
"sentence-transformers__multi-qa-MiniLM-L6-cos-v1",
|
478 |
+
"sentence-transformers__paraphrase-multilingual-MiniLM-L12-v2",
|
479 |
+
"sentence-transformers__paraphrase-multilingual-mpnet-base-v2",
|
480 |
+
"sentence-transformers__sentence-t5-base",
|
481 |
+
"sentence-transformers__sentence-t5-large",
|
482 |
+
"sentence-transformers__sentence-t5-xl",
|
483 |
+
"sentence-transformers__sentence-t5-xxl",
|
484 |
+
"sentence-transformers__use-cmlm-multilingual",
|
485 |
+
"sergeyzh__LaBSE-ru-turbo",
|
486 |
+
"sergeyzh__rubert-tiny-turbo",
|
487 |
+
"shibing624__text2vec-base-chinese",
|
488 |
+
"shibing624__text2vec-base-multilingual",
|
489 |
+
"shibing624__text2vec-large-chinese",
|
490 |
+
"silk-road__luotuo-bert-medium",
|
491 |
+
"uklfr__gottbert-base",
|
492 |
+
"vesteinn__DanskBERT",
|
493 |
+
"voyageai__voyage-2",
|
494 |
+
"voyageai__voyage-code-2",
|
495 |
+
"voyageai__voyage-large-2-instruct",
|
496 |
+
"voyageai__voyage-law-2",
|
497 |
+
"voyageai__voyage-lite-01-instruct",
|
498 |
+
"voyageai__voyage-lite-02-instruct",
|
499 |
+
"voyageai__voyage-multilingual-2",
|
500 |
+
"vprelovac__universal-sentence-encoder-multilingual-3",
|
501 |
+
"vprelovac__universal-sentence-encoder-multilingual-large-3",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
]
|
503 |
|
504 |
|
|
|
512 |
# Needs to be run whenever new files are added
|
513 |
def get_paths():
|
514 |
import collections, json, os
|
515 |
+
|
516 |
files = collections.defaultdict(list)
|
517 |
for model_dir in os.listdir("results"):
|
518 |
results_model_dir = os.path.join("results", model_dir)
|
|
|
527 |
if not os.path.isdir(os.path.join(results_model_dir, revision_folder)):
|
528 |
continue
|
529 |
for res_file in os.listdir(os.path.join(results_model_dir, revision_folder)):
|
530 |
+
if (res_file.endswith(".json")) and not (
|
531 |
+
res_file.endswith(("overall_results.json", "model_meta.json"))
|
532 |
+
):
|
533 |
results_model_file = os.path.join(results_model_dir, revision_folder, res_file)
|
534 |
files[model_name].append(results_model_file)
|
535 |
with open("paths.json", "w") as f:
|
|
|
573 |
with open(path_file) as f:
|
574 |
files = json.load(f)
|
575 |
downloaded_files = dl_manager.download_and_extract(files[self.config.name])
|
576 |
+
return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files})]
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
def _generate_examples(self, filepath):
|
579 |
"""This function returns the examples in the raw (text) form."""
|
|
|
597 |
split = "dev"
|
598 |
elif (ds_name in TESTFULL_SPLIT) and ("test.full" in res_dict):
|
599 |
split = "test.full"
|
600 |
+
elif ds_name in STANDARD_SPLIT:
|
601 |
split = []
|
602 |
if "standard" in res_dict:
|
603 |
split += ["standard"]
|
|
|
605 |
split += ["long"]
|
606 |
elif (ds_name in DEVTEST_SPLIT) and ("devtest" in res_dict):
|
607 |
split = "devtest"
|
608 |
+
elif ds_name in TEST_AVG_SPLIT:
|
609 |
# Average splits
|
610 |
res_dict = {}
|
611 |
for split in TEST_AVG_SPLIT[ds_name]:
|
|
|
626 |
for k, v in res_dict[split][0].items():
|
627 |
if k in ["hf_subset", "languages"]:
|
628 |
res_dict[k] = v
|
629 |
+
if not isinstance(v, float):
|
630 |
+
continue
|
631 |
v /= len(TEST_AVG_SPLIT[ds_name])
|
632 |
if k not in res_dict:
|
633 |
res_dict[k] = v
|
|
|
656 |
if not lang:
|
657 |
lang = subset
|
658 |
for metric, score in res.items():
|
659 |
+
if metric in SKIP_KEYS:
|
660 |
+
continue
|
661 |
if isinstance(score, dict):
|
662 |
# Legacy format with e.g. {cosine: {spearman: ...}}
|
663 |
# Now it is {cosine_spearman: ...}
|
664 |
for k, v in score.items():
|
665 |
if not isinstance(v, float):
|
666 |
+
print(f"WARNING: Expected float, got {v} for {ds_name} {lang} {metric} {k}")
|
667 |
continue
|
668 |
+
if metric in SKIP_KEYS:
|
669 |
+
continue
|
670 |
+
out.append(
|
671 |
+
{
|
672 |
+
"mteb_dataset_name": ds_name,
|
673 |
+
"eval_language": lang,
|
674 |
+
"metric": metric + "_" + k,
|
675 |
+
"score": v * 100,
|
676 |
+
"hf_subset": subset,
|
677 |
+
}
|
678 |
+
)
|
679 |
else:
|
680 |
if not isinstance(score, float):
|
681 |
+
print(f"WARNING: Expected float, got {score} for {ds_name} {lang} {metric}")
|
682 |
continue
|
683 |
+
out.append(
|
684 |
+
{
|
685 |
+
"mteb_dataset_name": ds_name,
|
686 |
+
"eval_language": lang,
|
687 |
+
"metric": metric,
|
688 |
+
"score": score * 100,
|
689 |
+
"split": split,
|
690 |
+
"hf_subset": subset,
|
691 |
+
}
|
692 |
+
)
|
693 |
|
694 |
### Old MTEB format ###
|
695 |
else:
|
696 |
is_multilingual = any(x in res_dict for x in EVAL_LANGS)
|
697 |
langs = res_dict.keys() if is_multilingual else ["en"]
|
698 |
for lang in langs:
|
699 |
+
if lang in SKIP_KEYS:
|
700 |
+
continue
|
701 |
test_result_lang = res_dict.get(lang) if is_multilingual else res_dict
|
702 |
subset = test_result_lang.pop("hf_subset", "")
|
703 |
if subset == "" and is_multilingual:
|
|
|
706 |
if not isinstance(score, dict):
|
707 |
score = {metric: score}
|
708 |
for sub_metric, sub_score in score.items():
|
709 |
+
if any(x in sub_metric for x in SKIP_KEYS):
|
710 |
+
continue
|
711 |
+
if isinstance(sub_score, dict):
|
712 |
+
continue
|
713 |
+
out.append(
|
714 |
+
{
|
715 |
+
"mteb_dataset_name": ds_name,
|
716 |
+
"eval_language": lang if is_multilingual else "",
|
717 |
+
"metric": f"{metric}_{sub_metric}" if metric != sub_metric else metric,
|
718 |
+
"score": sub_score * 100,
|
719 |
+
"split": split,
|
720 |
+
"hf_subset": subset,
|
721 |
+
}
|
722 |
+
)
|
723 |
for idx, row in enumerate(sorted(out, key=lambda x: x["mteb_dataset_name"])):
|
724 |
yield idx, row
|
725 |
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AFQMC.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ATEC.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonCounterfactualClassification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonPolarityClassification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AmazonReviewsClassification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArguAna.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArxivClusteringP2P.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ArxivClusteringS2S.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/AskUbuntuDupQuestions.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BIOSSES.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BQ.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/Banking77Classification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BiorxivClusteringP2P.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BiorxivClusteringS2S.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/BrightRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CLSClusteringP2P.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CLSClusteringS2S.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CMedQAv1.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CMedQAv2.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackAndroidRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackEnglishRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackGamingRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackGisRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackMathematicaRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackPhysicsRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackProgrammersRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackStatsRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackTexRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackUnixRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackWebmastersRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CQADupstackWordpressRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ClimateFEVER.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CmedqaRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/Cmnli.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/CovidRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/DBPedia.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/DuRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/EcomRetrieval.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/EmotionClassification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/FEVER.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/FiQA2018.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/HotpotQA.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/IFlyTek.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/ImdbClassification.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/JDReview.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/LCQMC.json
RENAMED
File without changes
|
results/{gte-Qwen1.5-7B-instruct β Alibaba-NLP__gte-Qwen1.5-7B-instruct}/no_revision_available/MMarcoReranking.json
RENAMED
File without changes
|