File size: 6,955 Bytes
9136186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
d522bb1
9136186
d522bb1
9136186
d522bb1
9136186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
language:
- en
- ar
- fr
- de
- hi
- it
- pt
- es
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-tweet-datasets
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: tweet_sentiment_multilingual
pretty_name: Tweet Sentiment Multilingual
train-eval-index:
- config: sentiment
  task: text-classification
  task_id: multi_class_classification
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    text: text
    label: target
  metrics:
  - type: accuracy
    name: Accuracy
  - type: f1
    name: F1 macro
    args:
      average: macro
  - type: f1
    name: F1 micro
    args:
      average: micro
  - type: f1
    name: F1 weighted
    args:
      average: weighted
  - type: precision
    name: Precision macro
    args:
      average: macro
  - type: precision
    name: Precision micro
    args:
      average: micro
  - type: precision
    name: Precision weighted
    args:
      average: weighted
  - type: recall
    name: Recall macro
    args:
      average: macro
  - type: recall
    name: Recall micro
    args:
      average: micro
  - type: recall
    name: Recall weighted
    args:
      average: weighted
configs:
- config_name: default
  data_files:
  - path: train/*.jsonl.gz
    split: train
  - path: test/*.jsonl.gz
    split: test
  - path: validation/*.jsonl.gz
    split: validation
- config_name: german
  data_files:
  - path:  train/german.jsonl.gz
    split: train
  - path:  test/german.jsonl.gz
    split: test
  - path:  validation/german.jsonl.gz
    split: validation
- config_name: italian
  data_files:
  - path:  train/italian.jsonl.gz
    split: train
  - path:  test/italian.jsonl.gz
    split: test
  - path:  validation/italian.jsonl.gz
    split: validation
- config_name: spanish
  data_files:
  - path:  train/spanish.jsonl.gz
    split: train
  - path:  test/spanish.jsonl.gz
    split: test
  - path:  validation/spanish.jsonl.gz
    split: validation
- config_name: french
  data_files:
  - path:  train/french.jsonl.gz
    split: train
  - path:  test/french.jsonl.gz
    split: test
  - path:  validation/french.jsonl.gz
    split: validation
- config_name: portuguese
  data_files:
  - path:  train/portuguese.jsonl.gz
    split: train
  - path:  test/portuguese.jsonl.gz
    split: test
  - path:  validation/portuguese.jsonl.gz
    split: validation
- config_name: hindi
  data_files:
  - path:  train/hindi.jsonl.gz
    split: train
  - path:  test/hindi.jsonl.gz
    split: test
  - path:  validation/hindi.jsonl.gz
    split: validation
- config_name: arabic
  data_files:
  - path:  train/arabic.jsonl.gz
    split: train
  - path:  test/arabic.jsonl.gz
    split: test
  - path:  validation/arabic.jsonl.gz
    split: validation
- config_name: english
  data_files:
  - path:  train/english.jsonl.gz
    split: train
  - path:  test/english.jsonl.gz
    split: test
  - path:  validation/english.jsonl.gz
    split: validation
dataset_info:
- config_name: sentiment
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          0: negative
          1: neutral
          2: positive
---

# Dataset Card for cardiffnlp/tweet_sentiment_multilingual

## Dataset Description

- **Homepage:** [https://github.com/cardiffnlp/xlm-t](https://github.com/cardiffnlp/xlm-t)
- **Repository:** - **Homepage:** [https://github.com/cardiffnlp/xlm-t](https://github.com/cardiffnlp/xlm-t)
- **Paper:** [https://aclanthology.org/2022.lrec-1.27/](https://aclanthology.org/2022.lrec-1.27/)
- **Point of Contact:** [Asahi Ushio](https://asahiushio.com/)

### Dataset Summary

Tweet Sentiment Multilingual consists of sentiment analysis dataset on Twitter in 8 different lagnuages.

- arabic
- english
- french
- german
- hindi
- italian
- portuguese
- spanish

### Supported Tasks and Leaderboards

- `text_classification`: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.

## Dataset Structure

### Data Instances

An instance from `sentiment` config:

```
{'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'}
```

### Data Fields

For `sentiment` config:

- `text`: a `string` feature containing the tweet.

- `label`: an `int` classification label with the following mapping:

    `0`: negative

    `1`: neutral

    `2`: positive


### Data Splits


- arabic
- english
- french
- german
- hindi
- italian
- portuguese
- spanish

| name            | train | validation | test  |
| --------------- | ----- | ---------- | ----- |
| arabic          | 1838  | 323        | 869   |
| english         | 1838  | 323        | 869   |
| french          | 1838  | 323        | 869   |
| german          | 1838  | 323        | 869   |
| hindi           | 1838  | 323        | 869   |
| italian         | 1838  | 323        | 869   |
| portuguese      | 1838  | 323        | 869   |
| spanish         | 1838  | 323        | 869   |

### Dataset Curators

Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP.

### Licensing Information

[Creative Commons Attribution 3.0 Unported License](https://groups.google.com/g/semevaltweet/c/k5DDcvVb_Vo/m/zEOdECFyBQAJ), and all of the datasets require complying with Twitter [Terms Of Service](https://twitter.com/tos) and Twitter API [Terms Of Service](https://developer.twitter.com/en/developer-terms/agreement-and-policy)


### Citation Information

```
@inproceedings{barbieri-etal-2022-xlm,
    title = "{XLM}-{T}: Multilingual Language Models in {T}witter for Sentiment Analysis and Beyond",
    author = "Barbieri, Francesco  and
      Espinosa Anke, Luis  and
      Camacho-Collados, Jose",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.27",
    pages = "258--266",
    abstract = "Language models are ubiquitous in current NLP, and their multilingual capacity has recently attracted considerable attention. However, current analyses have almost exclusively focused on (multilingual variants of) standard benchmarks, and have relied on clean pre-training and task-specific corpora as multilingual signals. In this paper, we introduce XLM-T, a model to train and evaluate multilingual language models in Twitter. In this paper we provide: (1) a new strong multilingual baseline consisting of an XLM-R (Conneau et al. 2020) model pre-trained on millions of tweets in over thirty languages, alongside starter code to subsequently fine-tune on a target task; and (2) a set of unified sentiment analysis Twitter datasets in eight different languages and a XLM-T model trained on this dataset.",
}
```