File size: 4,024 Bytes
e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 6a4780f a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 6a4780f a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 a05e9d9 e8b82c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""Corrupted Fashion-Mnist Data Set.
This module contains the huggingface dataset adaptation of
the Corrupted Fashion-Mnist Data Set.
Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`."""
import struct
import datasets
import numpy as np
from datasets.tasks import ImageClassification
_CITATION = """\
@inproceedings{Weiss2022SimpleTechniques,
title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning},
author={Weiss, Michael and Tonella, Paolo},
booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis},
year={2022}
}
"""
_DESCRIPTION = """\
Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset.
This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist
dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al.
"""
CONFIG = datasets.BuilderConfig(
name="fashion_mnist_corrupted",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
)
_HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c"
_LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE"
if CONFIG.version == datasets.Version("1.0.0"):
tag = "v1.0.0"
else:
raise ValueError("Unsupported version.")
_URL = (
f"https://github.com/testingautomated-usi/fashion-mnist-c/raw/{tag}/generated/npy/"
)
_URLS = {
"train_images": "fmnist-c-train.npy",
"train_labels": "fmnist-c-train-labels.npy",
"test_images": "fmnist-c-test.npy",
"test_labels": "fmnist-c-test-labels.npy",
}
_NAMES = [
"T - shirt / top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
class FashionMnistCorrupted(datasets.GeneratorBasedBuilder):
"""FashionMNIST-Corrupted Data Set"""
BUILDER_CONFIGS = [CONFIG]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[
ImageClassification(image_column="image", label_column="label")
],
)
def _split_generators(self, dl_manager):
urls_to_download = {
key: _URL + fname for key, fname in _URLS.items()
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": [
downloaded_files["train_images"],
downloaded_files["train_labels"],
],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": [
downloaded_files["test_images"],
downloaded_files["test_labels"],
],
"split": "test",
},
),
]
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw form."""
# Images
images = np.load(filepath[0])
labels = np.load(filepath[1])
if images.shape[0] != labels.shape[0]:
raise ValueError(
f"Number of images {images.shape[0]} and labels {labels.shape[0]} do not match."
)
for idx in range(images.shape[0]):
yield idx, {"image": images[idx], "label": int(labels[idx])}
|