File size: 4,023 Bytes
e8b82c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05e9d9
 
 
 
 
e8b82c7
 
 
 
 
a05e9d9
e8b82c7
 
 
a05e9d9
6313613
a05e9d9
e8b82c7
 
a05e9d9
 
 
 
e8b82c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05e9d9
e8b82c7
 
 
 
 
 
 
 
 
 
 
 
 
a05e9d9
 
 
e8b82c7
 
 
a05e9d9
6a4780f
a05e9d9
b7c327e
e8b82c7
 
 
 
 
a05e9d9
 
 
 
e8b82c7
 
 
 
 
 
a05e9d9
 
 
 
e8b82c7
 
 
 
 
 
 
 
a05e9d9
 
 
 
 
 
 
e8b82c7
a05e9d9
 
e8b82c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Corrupted Fashion-Mnist Data Set.

This module contains the huggingface dataset adaptation of
the Corrupted Fashion-Mnist Data Set.
Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`."""
import struct

import datasets
import numpy as np
from datasets.tasks import ImageClassification

_CITATION = """\
@inproceedings{Weiss2022SimpleTechniques,
  title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning},
  author={Weiss, Michael and Tonella, Paolo},
  booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis},
  year={2022}
}
"""

_DESCRIPTION = """\
Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset.
This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist
dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al.
"""

CONFIG = datasets.BuilderConfig(
    name="fashion_mnist_corrupted",
    version=datasets.Version("1.0.0"),
    description=_DESCRIPTION,
)

_HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c"
_LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE"

if CONFIG.version == datasets.Version("1.0.0"):
    tag = "v1.0.0"
else:
    raise ValueError("Unsupported version.")

_URL = (
    f"https://raw.githubusercontent.com/testingautomated-usi/fashion-mnist-c/{tag}/generated/npy/"
)

_URLS = {
    "train_images": "fmnist-c-train.npy",
    "train_labels": "fmnist-c-train-labels.npy",
    "test_images": "fmnist-c-test.npy",
    "test_labels": "fmnist-c-test-labels.npy",
}

_NAMES = [
    "T - shirt / top",
    "Trouser",
    "Pullover",
    "Dress",
    "Coat",
    "Sandal",
    "Shirt",
    "Sneaker",
    "Bag",
    "Ankle boot",
]


class FashionMnistCorrupted(datasets.GeneratorBasedBuilder):
    """FashionMNIST-Corrupted Data Set"""

    BUILDER_CONFIGS = [CONFIG]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "label"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[
                ImageClassification(image_column="image", label_column="label")
            ],
        )

    def _split_generators(self, dl_manager):
        urls_to_download = {
            key: _URL + fname for key, fname in _URLS.items()
        }
        downloaded_files = dl_manager.download(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": [
                        downloaded_files["train_images"],
                        downloaded_files["train_labels"],
                    ],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": [
                        downloaded_files["test_images"],
                        downloaded_files["test_labels"],
                    ],
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """This function returns the examples in the raw form."""
        # Images
        images = np.load(filepath[0])
        labels = np.load(filepath[1])

        if images.shape[0] != labels.shape[0]:
            raise ValueError(
                f"Number of images {images.shape[0]} and labels {labels.shape[0]} do not match."
            )

        for idx in range(images.shape[0]):
            yield idx, {"image": images[idx], "label": int(labels[idx])}