mweiss commited on
Commit
487e805
1 Parent(s): 3cfe54c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -1
README.md CHANGED
@@ -1,3 +1,66 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ - machine-generated
5
+ language_creators:
6
+ - machine-generated
7
+ languages:
8
+ - en
9
+ licenses:
10
+ - mit
11
+ multilinguality:
12
+ - monolingual
13
+ pretty_name: fashion-mnist-c
14
+ size_categories:
15
+ - 10K<n<100K
16
+ source_datasets:
17
+ - extended|fashion_mnist
18
+ task_categories:
19
+ - image-classification
20
+ task_ids: []
21
  ---
22
+
23
+ # Fashion-Mnist-C (Corrupted Fashion-Mnist)
24
+
25
+ A corrupted Fashion-MNIST benchmark for testing out-of-distribution robustness of computer vision models, which were trained on Fashion-Mmnist.
26
+
27
+ [Fashion-Mnist](https://github.com/zalandoresearch/fashion-mnist) is a drop-in replacement for MNIST and Fashion-Mnist-C is a corresponding drop-in replacement for [MNIST-C](https://arxiv.org/abs/1906.02337).
28
+
29
+ ## Corruptions
30
+ The following corruptions are applied to the images, equivalently to MNIST-C:
31
+
32
+ - **Noise** (shot noise and impulse noise)
33
+ - **Blur** (glass and motion blur)
34
+ - **Transformations** (shear, scale, rotate, brightness, contrast, saturate, inverse)
35
+
36
+ In addition, we apply various **image flippings and turnings**: For fashion images, flipping the image does not change its label,
37
+ and still keeps it a valid image. However, we noticed that in the nominal fmnist dataset, most images are identically oriented
38
+ (e.g. most shoes point to the left side). Thus, flipped images provide valid OOD inputs.
39
+
40
+ Most corruptions are applied at a randomly selected level of *severity*, s.t. some corrupted images are really hard to classify whereas for others the corruption, while present, is subtle.
41
+
42
+ ## Examples
43
+
44
+ | Turned | Blurred | Rotated | Noise | Noise | Turned |
45
+ | ------------- | ------------- | --------| --------- | -------- | --------- |
46
+ | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_0.png" width="100" height="100"> | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_1.png" width="100" height="100"> | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_6.png" width="100" height="100"> | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_3.png" width="100" height="100"> | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_4.png" width="100" height="100"> | <img src="https://github.com/testingautomated-usi/fashion-mnist-c/raw/main/generated/png-examples/single_5.png" width="100" height="100"> |
47
+
48
+
49
+
50
+ ## Citation
51
+ If you use this dataset, please cite the following paper:
52
+
53
+ ```
54
+ @inproceedings{Weiss2022SimpleTechniques,
55
+ title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning},
56
+ author={Weiss, Michael and Tonella, Paolo},
57
+ booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis},
58
+ year={2022}
59
+ }
60
+ ```
61
+
62
+ Also, you may want to cite FMNIST and MNIST-C.
63
+
64
+ ## Credits
65
+ - Fashion-Mnist-C is inspired by Googles MNIST-C and our repository is essentially a clone of theirs. See their [paper](https://arxiv.org/abs/1906.02337) and [repo](https://github.com/google-research/mnist-c).
66
+ - Find the nominal (i.e., non-corrupted) Fashion-MNIST dataset [here](https://github.com/zalandoresearch/fashion-mnist).