"""Corrupted Fashion-Mnist Data Set. This module contains the huggingface dataset adaptation of the Corrupted Fashion-Mnist Data Set. Find the full code at `https://github.com/testingautomated-usi/fashion-mnist-c`.""" import struct import datasets import numpy as np from datasets.tasks import ImageClassification _CITATION = """\ @inproceedings{Weiss2022SimpleTechniques, title={Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning}, author={Weiss, Michael and Tonella, Paolo}, booktitle={Proceedings of the 31th ACM SIGSOFT International Symposium on Software Testing and Analysis}, year={2022} } """ _DESCRIPTION = """\ Fashion-MNIST is dataset of fashion images, indended as a drop-in replacement for the MNIST dataset. This dataset (Fashion-Mnist-Corrupted) provides out-of-distribution data for the Fashion-Mnist dataset. Fashion-Mnist-Corrupted is based on a similar project for MNIST, called MNIST-C, by Mu et. al. """ CONFIG = datasets.BuilderConfig( name="fashion_mnist_corrupted", version=datasets.Version("1.0.0"), description=_DESCRIPTION, ) _HOMEPAGE = "https://github.com/testingautomated-usi/fashion-mnist-c" _LICENSE = "https://github.com/testingautomated-usi/fashion-mnist-c/blob/main/LICENSE" if CONFIG.version == datasets.Version("1.0.0"): tag = "v1.0.0" else: raise ValueError("Unsupported version.") _URL = ( f"https://github.com/testingautomated-usi/fashion-mnist-c/raw/{tag}/generated/npy/" ) _URLS = { "train_images": "fmnist-c-train.npy", "train_labels": "fmnist-c-train-labels.npy", "test_images": "fmnist-c-test.npy", "test_labels": "fmnist-c-test-labels.npy", } _NAMES = [ "T - shirt / top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot", ] class FashionMnistCorrupted(datasets.GeneratorBasedBuilder): """FashionMNIST-Corrupted Data Set""" BUILDER_CONFIGS = [CONFIG] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "label"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ ImageClassification(image_column="image", label_column="label") ], ) def _split_generators(self, dl_manager): urls_to_download = { key: _URL + fname for key, fname in _URLS.items() } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": [ downloaded_files["train_images"], downloaded_files["train_labels"], ], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": [ downloaded_files["test_images"], downloaded_files["test_labels"], ], "split": "test", }, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw form.""" # Images images = np.load(filepath[0]) labels = np.load(filepath[1]) if images.shape[0] != labels.shape[0]: raise ValueError( f"Number of images {images.shape[0]} and labels {labels.shape[0]} do not match." ) for idx in range(images.shape[0]): yield idx, {"image": images[idx], "label": int(labels[idx])}