Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
aa38975
1 Parent(s): e0b2b54

Convert dataset to Parquet (#3)

Browse files

- Convert dataset to Parquet (c4b2c0b4fb719ce456f0d3435a52d522aa7177f4)
- Add bzd data files (fbf2b05544cd2371cda92976f7219c3ef317d4de)
- Add cni data files (005bb9e5c78fcdebd9d7eaa3de57dba7b08bbaf3)
- Add gn data files (6fd0ce310f42e765026c9355ffd84ce6fe99372b)
- Add hch data files (56acd4de2e9ddefb31cd6fd8ed2eae9188edd7df)
- Add nah data files (ed236eba71bc9cbbb2ff3a98b31c9a607983308b)
- Add oto data files (39bc0e04d6ec2f8c1e2ec1ea188e5fc55d40f63a)
- Add quy data files (914f324fdabeb4f6f78ad9cca47e3afb28f80b8c)
- Add shp data files (cf426f329996e3d6e7ce11d71b2988c4f7401f16)
- Add tar data files (5b7333aae06501207852617fdb52e058b03b1cf3)
- Delete loading script (24e96babbc9322448e657fdf63c86a81b3211d46)
- Add all_languages data files (668b53909c205ece201487394833a36ebab47245)
- Delete legacy dataset_infos.json (0b4bf179ffc3fcc8fff712e8fa1e4a9f89c8562a)

README.md CHANGED
@@ -29,6 +29,30 @@ task_ids:
29
  - natural-language-inference
30
  pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
31
  dataset_info:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  - config_name: aym
33
  features:
34
  - name: premise
@@ -44,13 +68,13 @@ dataset_info:
44
  '2': contradiction
45
  splits:
46
  - name: validation
47
- num_bytes: 117538
48
  num_examples: 743
49
  - name: test
50
- num_bytes: 115259
51
  num_examples: 750
52
- download_size: 2256093
53
- dataset_size: 232797
54
  - config_name: bzd
55
  features:
56
  - name: premise
@@ -66,13 +90,13 @@ dataset_info:
66
  '2': contradiction
67
  splits:
68
  - name: validation
69
- num_bytes: 143362
70
  num_examples: 743
71
  - name: test
72
- num_bytes: 127684
73
  num_examples: 750
74
- download_size: 2256093
75
- dataset_size: 271046
76
  - config_name: cni
77
  features:
78
  - name: premise
@@ -88,13 +112,13 @@ dataset_info:
88
  '2': contradiction
89
  splits:
90
  - name: validation
91
- num_bytes: 113264
92
  num_examples: 658
93
  - name: test
94
- num_bytes: 116292
95
  num_examples: 750
96
- download_size: 2256093
97
- dataset_size: 229556
98
  - config_name: gn
99
  features:
100
  - name: premise
@@ -110,13 +134,13 @@ dataset_info:
110
  '2': contradiction
111
  splits:
112
  - name: validation
113
- num_bytes: 115143
114
  num_examples: 743
115
  - name: test
116
- num_bytes: 101956
117
  num_examples: 750
118
- download_size: 2256093
119
- dataset_size: 217099
120
  - config_name: hch
121
  features:
122
  - name: premise
@@ -132,13 +156,13 @@ dataset_info:
132
  '2': contradiction
133
  splits:
134
  - name: validation
135
- num_bytes: 127974
136
  num_examples: 743
137
  - name: test
138
- num_bytes: 120865
139
  num_examples: 750
140
- download_size: 2256093
141
- dataset_size: 248839
142
  - config_name: nah
143
  features:
144
  - name: premise
@@ -154,13 +178,13 @@ dataset_info:
154
  '2': contradiction
155
  splits:
156
  - name: validation
157
- num_bytes: 50749
158
  num_examples: 376
159
  - name: test
160
- num_bytes: 102961
161
  num_examples: 738
162
- download_size: 2256093
163
- dataset_size: 153710
164
  - config_name: oto
165
  features:
166
  - name: premise
@@ -176,13 +200,13 @@ dataset_info:
176
  '2': contradiction
177
  splits:
178
  - name: validation
179
- num_bytes: 27018
180
  num_examples: 222
181
  - name: test
182
- num_bytes: 119658
183
  num_examples: 748
184
- download_size: 2256093
185
- dataset_size: 146676
186
  - config_name: quy
187
  features:
188
  - name: premise
@@ -198,13 +222,13 @@ dataset_info:
198
  '2': contradiction
199
  splits:
200
  - name: validation
201
- num_bytes: 125644
202
  num_examples: 743
203
  - name: test
204
- num_bytes: 112758
205
  num_examples: 750
206
- download_size: 2256093
207
- dataset_size: 238402
208
  - config_name: shp
209
  features:
210
  - name: premise
@@ -220,13 +244,13 @@ dataset_info:
220
  '2': contradiction
221
  splits:
222
  - name: validation
223
- num_bytes: 124508
224
  num_examples: 743
225
  - name: test
226
- num_bytes: 118942
227
  num_examples: 750
228
- download_size: 2256093
229
- dataset_size: 243450
230
  - config_name: tar
231
  features:
232
  - name: premise
@@ -242,37 +266,80 @@ dataset_info:
242
  '2': contradiction
243
  splits:
244
  - name: validation
245
- num_bytes: 139504
246
  num_examples: 743
247
  - name: test
248
- num_bytes: 122632
249
  num_examples: 750
250
- download_size: 2256093
251
- dataset_size: 262136
 
252
  - config_name: all_languages
253
- features:
254
- - name: language
255
- dtype: string
256
- - name: premise
257
- dtype: string
258
- - name: hypothesis
259
- dtype: string
260
- - name: label
261
- dtype:
262
- class_label:
263
- names:
264
- '0': entailment
265
- '1': neutral
266
- '2': contradiction
267
- splits:
268
- - name: validation
269
- num_bytes: 1129092
270
- num_examples: 6457
271
- - name: test
272
- num_bytes: 1210591
273
- num_examples: 7486
274
- download_size: 2256093
275
- dataset_size: 2339683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
  ---
277
 
278
  # Dataset Card for AmericasNLI
 
29
  - natural-language-inference
30
  pretty_name: 'AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages.'
31
  dataset_info:
32
+ - config_name: all_languages
33
+ features:
34
+ - name: language
35
+ dtype: string
36
+ - name: premise
37
+ dtype: string
38
+ - name: hypothesis
39
+ dtype: string
40
+ - name: label
41
+ dtype:
42
+ class_label:
43
+ names:
44
+ '0': entailment
45
+ '1': neutral
46
+ '2': contradiction
47
+ splits:
48
+ - name: validation
49
+ num_bytes: 1129080
50
+ num_examples: 6457
51
+ - name: test
52
+ num_bytes: 1210579
53
+ num_examples: 7486
54
+ download_size: 791239
55
+ dataset_size: 2339659
56
  - config_name: aym
57
  features:
58
  - name: premise
 
68
  '2': contradiction
69
  splits:
70
  - name: validation
71
+ num_bytes: 117530
72
  num_examples: 743
73
  - name: test
74
+ num_bytes: 115251
75
  num_examples: 750
76
+ download_size: 87882
77
+ dataset_size: 232781
78
  - config_name: bzd
79
  features:
80
  - name: premise
 
90
  '2': contradiction
91
  splits:
92
  - name: validation
93
+ num_bytes: 143354
94
  num_examples: 743
95
  - name: test
96
+ num_bytes: 127676
97
  num_examples: 750
98
+ download_size: 91039
99
+ dataset_size: 271030
100
  - config_name: cni
101
  features:
102
  - name: premise
 
112
  '2': contradiction
113
  splits:
114
  - name: validation
115
+ num_bytes: 113256
116
  num_examples: 658
117
  - name: test
118
+ num_bytes: 116284
119
  num_examples: 750
120
+ download_size: 78899
121
+ dataset_size: 229540
122
  - config_name: gn
123
  features:
124
  - name: premise
 
134
  '2': contradiction
135
  splits:
136
  - name: validation
137
+ num_bytes: 115135
138
  num_examples: 743
139
  - name: test
140
+ num_bytes: 101948
141
  num_examples: 750
142
+ download_size: 80429
143
+ dataset_size: 217083
144
  - config_name: hch
145
  features:
146
  - name: premise
 
156
  '2': contradiction
157
  splits:
158
  - name: validation
159
+ num_bytes: 127966
160
  num_examples: 743
161
  - name: test
162
+ num_bytes: 120857
163
  num_examples: 750
164
+ download_size: 90748
165
+ dataset_size: 248823
166
  - config_name: nah
167
  features:
168
  - name: premise
 
178
  '2': contradiction
179
  splits:
180
  - name: validation
181
+ num_bytes: 50741
182
  num_examples: 376
183
  - name: test
184
+ num_bytes: 102953
185
  num_examples: 738
186
+ download_size: 56953
187
+ dataset_size: 153694
188
  - config_name: oto
189
  features:
190
  - name: premise
 
200
  '2': contradiction
201
  splits:
202
  - name: validation
203
+ num_bytes: 27010
204
  num_examples: 222
205
  - name: test
206
+ num_bytes: 119650
207
  num_examples: 748
208
+ download_size: 57849
209
+ dataset_size: 146660
210
  - config_name: quy
211
  features:
212
  - name: premise
 
222
  '2': contradiction
223
  splits:
224
  - name: validation
225
+ num_bytes: 125636
226
  num_examples: 743
227
  - name: test
228
+ num_bytes: 112750
229
  num_examples: 750
230
+ download_size: 85673
231
+ dataset_size: 238386
232
  - config_name: shp
233
  features:
234
  - name: premise
 
244
  '2': contradiction
245
  splits:
246
  - name: validation
247
+ num_bytes: 124500
248
  num_examples: 743
249
  - name: test
250
+ num_bytes: 118934
251
  num_examples: 750
252
+ download_size: 85544
253
+ dataset_size: 243434
254
  - config_name: tar
255
  features:
256
  - name: premise
 
266
  '2': contradiction
267
  splits:
268
  - name: validation
269
+ num_bytes: 139496
270
  num_examples: 743
271
  - name: test
272
+ num_bytes: 122624
273
  num_examples: 750
274
+ download_size: 89683
275
+ dataset_size: 262120
276
+ configs:
277
  - config_name: all_languages
278
+ data_files:
279
+ - split: validation
280
+ path: all_languages/validation-*
281
+ - split: test
282
+ path: all_languages/test-*
283
+ - config_name: aym
284
+ data_files:
285
+ - split: validation
286
+ path: aym/validation-*
287
+ - split: test
288
+ path: aym/test-*
289
+ - config_name: bzd
290
+ data_files:
291
+ - split: validation
292
+ path: bzd/validation-*
293
+ - split: test
294
+ path: bzd/test-*
295
+ - config_name: cni
296
+ data_files:
297
+ - split: validation
298
+ path: cni/validation-*
299
+ - split: test
300
+ path: cni/test-*
301
+ - config_name: gn
302
+ data_files:
303
+ - split: validation
304
+ path: gn/validation-*
305
+ - split: test
306
+ path: gn/test-*
307
+ - config_name: hch
308
+ data_files:
309
+ - split: validation
310
+ path: hch/validation-*
311
+ - split: test
312
+ path: hch/test-*
313
+ - config_name: nah
314
+ data_files:
315
+ - split: validation
316
+ path: nah/validation-*
317
+ - split: test
318
+ path: nah/test-*
319
+ - config_name: oto
320
+ data_files:
321
+ - split: validation
322
+ path: oto/validation-*
323
+ - split: test
324
+ path: oto/test-*
325
+ - config_name: quy
326
+ data_files:
327
+ - split: validation
328
+ path: quy/validation-*
329
+ - split: test
330
+ path: quy/test-*
331
+ - config_name: shp
332
+ data_files:
333
+ - split: validation
334
+ path: shp/validation-*
335
+ - split: test
336
+ path: shp/test-*
337
+ - config_name: tar
338
+ data_files:
339
+ - split: validation
340
+ path: tar/validation-*
341
+ - split: test
342
+ path: tar/test-*
343
  ---
344
 
345
  # Dataset Card for AmericasNLI
all_languages/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6197779797f2b60bab6de7520d9bb0a80c1d62016b4401b508d6f3b9bd69b979
3
+ size 411132
all_languages/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dc0f6fa9663309e352ae0d9bbae42939c68edc0e32abe70d02f9184d74124e5
3
+ size 380107
americas_nli.py DELETED
@@ -1,177 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. Licensed under the Apache License, Version 2.0 (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # http://www.apache.org/licenses/LICENSE-2.0
7
- #
8
- # Unless required by applicable law or agreed to in writing, software
9
- # distributed under the License is distributed on an "AS IS" BASIS,
10
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
- # See the License for the specific language governing permissions and
12
- # limitations under the License.
13
-
14
- # Lint as: python3
15
- """AmericasNLI: A NLI Corpus of 10 Indigenous Low-Resource Languages."""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
-
22
-
23
- _CITATION = """
24
- @article{DBLP:journals/corr/abs-2104-08726,
25
- author = {Abteen Ebrahimi and
26
- Manuel Mager and
27
- Arturo Oncevay and
28
- Vishrav Chaudhary and
29
- Luis Chiruzzo and
30
- Angela Fan and
31
- John Ortega and
32
- Ricardo Ramos and
33
- Annette Rios and
34
- Ivan Vladimir and
35
- Gustavo A. Gim{\'{e}}nez{-}Lugo and
36
- Elisabeth Mager and
37
- Graham Neubig and
38
- Alexis Palmer and
39
- Rolando A. Coto Solano and
40
- Ngoc Thang Vu and
41
- Katharina Kann},
42
- title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of
43
- Pretrained Multilingual Models in Truly Low-resource Languages},
44
- journal = {CoRR},
45
- volume = {abs/2104.08726},
46
- year = {2021},
47
- url = {https://arxiv.org/abs/2104.08726},
48
- eprinttype = {arXiv},
49
- eprint = {2104.08726},
50
- timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
51
- biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},
52
- bibsource = {dblp computer science bibliography, https://dblp.org}
53
- }
54
- """
55
-
56
- _DESCRIPTION = """\
57
- AmericasNLI is an extension of XNLI (Conneau et al., 2018) – a natural language inference (NLI) dataset covering 15 high-resource languages – to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).
58
- """
59
-
60
- VERSION = datasets.Version("1.0.0", "")
61
- _DEV_DATA_URL = "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv"
62
- _TEST_DATA_URL = "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv"
63
-
64
- _LANGUAGES = ("aym", "bzd", "cni", "gn", "hch", "nah", "oto", "quy", "shp", "tar")
65
-
66
-
67
- class AmericasNLIConfig(datasets.BuilderConfig):
68
- """BuilderConfig for AmericasNLI."""
69
-
70
- def __init__(self, language: str, languages=None, **kwargs):
71
- """BuilderConfig for AmericasNLI.
72
-
73
- Args:
74
- language: One of aym, bzd, cni, gn, hch, nah, oto, quy, shp, tar or all_languages
75
- **kwargs: keyword arguments forwarded to super.
76
- """
77
- super(AmericasNLIConfig, self).__init__(**kwargs)
78
- self.language = language
79
- if language != "all_languages":
80
- self.languages = [language]
81
- else:
82
- self.languages = languages if languages is not None else _LANGUAGES
83
-
84
-
85
- class AmericasNLI(datasets.GeneratorBasedBuilder):
86
- """TODO"""
87
-
88
- VERSION = VERSION
89
- BUILDER_CONFIG_CLASS = AmericasNLIConfig
90
- BUILDER_CONFIGS = [
91
- AmericasNLIConfig(
92
- name=lang,
93
- language=lang,
94
- version=VERSION,
95
- description=f"Plain text import of AmericasNLI for the {lang} language",
96
- )
97
- for lang in _LANGUAGES
98
- ] + [
99
- AmericasNLIConfig(
100
- name="all_languages",
101
- language="all_languages",
102
- version=VERSION,
103
- description="Plain text import of AmericasNLI for all languages",
104
- )
105
- ]
106
-
107
- def _info(self):
108
- if self.config.language == "all_languages":
109
- features = datasets.Features(
110
- {
111
- "language": datasets.Value("string"),
112
- "premise": datasets.Value("string"),
113
- "hypothesis": datasets.Value("string"),
114
- "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
115
- }
116
- )
117
- else:
118
- features = datasets.Features(
119
- {
120
- "premise": datasets.Value("string"),
121
- "hypothesis": datasets.Value("string"),
122
- "label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
123
- }
124
- )
125
- return datasets.DatasetInfo(
126
- description=_DESCRIPTION,
127
- features=features,
128
- # No default supervised_keys (as we have to pass both premise
129
- # and hypothesis as input).
130
- supervised_keys=None,
131
- homepage="https://github.com/nala-cub/AmericasNLI",
132
- citation=_CITATION,
133
- )
134
-
135
- def _split_generators(self, dl_manager):
136
- dl_paths = dl_manager.download(
137
- {
138
- "dev_data": _DEV_DATA_URL,
139
- "test_data": _TEST_DATA_URL,
140
- }
141
- )
142
- return [
143
- datasets.SplitGenerator(
144
- name=datasets.Split.VALIDATION,
145
- gen_kwargs={
146
- "filepath": dl_paths["dev_data"],
147
- },
148
- ),
149
- datasets.SplitGenerator(
150
- name=datasets.Split.TEST,
151
- gen_kwargs={
152
- "filepath": dl_paths["test_data"],
153
- },
154
- ),
155
- ]
156
-
157
- def _generate_examples(self, filepath: str):
158
- """This function returns the examples in the raw (text) form."""
159
- idx = 0
160
- with open(filepath, encoding="utf-8") as f:
161
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
162
- for row in reader:
163
- if row["language"] == self.config.language:
164
- yield idx, {
165
- "premise": row["premise"],
166
- "hypothesis": row["hypothesis"],
167
- "label": row["label"],
168
- }
169
- idx += 1
170
- elif self.config.language == "all_languages":
171
- yield idx, {
172
- "language": row["language"],
173
- "premise": row["premise"],
174
- "hypothesis": row["hypothesis"],
175
- "label": row["label"],
176
- }
177
- idx += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aym/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:896a0b3bb572957898fd3816c2784120f51f553d19556bfab4b6f5183de25a21
3
+ size 43340
aym/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e013d265c28563d845fd8d459b186ab0eca8c3e8ca01d86be0169f5ff5362c9e
3
+ size 44542
bzd/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dddd941efee902888917a817b0b10175f94fbebbe8be3bf4748100b5b9191c3a
3
+ size 42857
bzd/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da1d32006763143587ae9696c9490da6c2878b8a517ace51556584c7328e92ee
3
+ size 48182
cni/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab5948cebe3927db3e19464ea0aa3bf8a53c87ea9a730526ccb875fa009922c4
3
+ size 40572
cni/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56630838e3349201cc9a7095da4144c1a974765c285aea09e4c6dc3e14001459
3
+ size 38327
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"aym": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "aym", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 117538, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 115259, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 232797, "size_in_bytes": 2488890}, "bzd": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "bzd", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 143362, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 127684, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 271046, "size_in_bytes": 2527139}, "cni": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "cni", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 113264, "num_examples": 658, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 116292, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 229556, "size_in_bytes": 2485649}, "gn": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "gn", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 115143, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 101956, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 217099, "size_in_bytes": 2473192}, "hch": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "hch", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 127974, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 120865, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 248839, "size_in_bytes": 2504932}, "nah": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "nah", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 50749, "num_examples": 376, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 102961, "num_examples": 738, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 153710, "size_in_bytes": 2409803}, "oto": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "oto", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 27018, "num_examples": 222, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 119658, "num_examples": 748, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 146676, "size_in_bytes": 2402769}, "quy": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "quy", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 125644, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 112758, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 238402, "size_in_bytes": 2494495}, "shp": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "shp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 124508, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 118942, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 243450, "size_in_bytes": 2499543}, "tar": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "tar", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 139504, "num_examples": 743, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 122632, "num_examples": 750, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 262136, "size_in_bytes": 2518229}, "all_languages": {"description": "AmericasNLI is an extension of XNLI (Conneau et al., 2018) \u2013 a natural language inference (NLI) dataset covering 15 high-resource languages \u2013 to 10 low-resource indigenous languages spoken in the Americas: Ashaninka, Aymara, Bribri, Guarani, Nahuatl, Otomi, Quechua, Raramuri, Shipibo-Konibo, and Wixarika. As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels).\n", "citation": "\n@article{DBLP:journals/corr/abs-2104-08726,\n author = {Abteen Ebrahimi and\n Manuel Mager and\n Arturo Oncevay and\n Vishrav Chaudhary and\n Luis Chiruzzo and\n Angela Fan and\n John Ortega and\n Ricardo Ramos and\n Annette Rios and\n Ivan Vladimir and\n Gustavo A. Gim{'{e}}nez{-}Lugo and\n Elisabeth Mager and\n Graham Neubig and\n Alexis Palmer and\n Rolando A. Coto Solano and\n Ngoc Thang Vu and\n Katharina Kann},\n title = {AmericasNLI: Evaluating Zero-shot Natural Language Understanding of\n Pretrained Multilingual Models in Truly Low-resource Languages},\n journal = {CoRR},\n volume = {abs/2104.08726},\n year = {2021},\n url = {https://arxiv.org/abs/2104.08726},\n eprinttype = {arXiv},\n eprint = {2104.08726},\n timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-2104-08726.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "TODO", "license": "", "features": {"language": {"dtype": "string", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "americas_nli", "config_name": "all_languages", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"validation": {"name": "validation", "num_bytes": 1129092, "num_examples": 6457, "dataset_name": "americas_nli"}, "test": {"name": "test", "num_bytes": 1210591, "num_examples": 7486, "dataset_name": "americas_nli"}}, "download_checksums": {"https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/dev.tsv": {"num_bytes": 1090405, "checksum": "a2678f2820a2008547c5d993118979cc82a25d51a73570571566a1b74d8e8530"}, "https://raw.githubusercontent.com/nala-cub/AmericasNLI/main/test.tsv": {"num_bytes": 1165688, "checksum": "1e16c058de33ddaab4a037b1078a31ecab08afddfdc840140593b6da1439bcf8"}}, "download_size": 2256093, "post_processing_size": null, "dataset_size": 2339683, "size_in_bytes": 4595776}}
 
 
gn/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dbd99b1f8cb88fdac4872e2fd48dd2acde44f057d9296754c6777af2e96e127
3
+ size 38172
gn/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd99e85bf961c6b142e1d8b78d540ad7e84d892b1792b5a4cf735c088564c684
3
+ size 42257
hch/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f63e8edc98f52fbc181f052125b3c00ad81dfe98664d853b017d84360cc244b1
3
+ size 44003
hch/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cab185baa7fd1fb7aec50a380d467b4a6a37df330de959ffec4dc31f067a92e6
3
+ size 46745
nah/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04fdf01933b4359b26bb8b6c112e4ffd8ea70b4677aa153fa48fc99538f88a06
3
+ size 36715
nah/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b25cc0fb743cb19acaec77bf54fa190c08c6bdd7c168021a568922919a56937
3
+ size 20238
oto/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c719ef8ba5413006001aa03a0acc90d07d5a1333bd43739259152ffcdc209af1
3
+ size 44068
oto/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b67c8b565fea52357d3bd1c264c738d0d04ed05110ee11e1879a04534e8221b
3
+ size 13781
quy/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741df884950981010ec64e4826fb6a990d336ca0b1ccf936d8789dc1fd5fc474
3
+ size 40858
quy/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8475ad23b027008dadba25a0b209a78e89994e8385e7eb1d9e76110f07b3c3f
3
+ size 44815
shp/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aff1cbdcd32edfcf41f7d6d454c0b1abf4c85e269ce94221e6c726785a56f59
3
+ size 42017
shp/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6371ebaf3c800f9dabca3199bd8a62acfa32b91b29345422988553a205ae9e2f
3
+ size 43527
tar/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78b54f010e4918d73146e5f0136838a5340dda64b82d0f306f20a5b61155367c
3
+ size 42615
tar/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1533f0b3f08499775cca3a167f78cf0ab75334655a293198555ddfb7c1df113b
3
+ size 47068