Datasets:
Commit
·
7312480
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +189 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- hkcancor.py +315 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- yue
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- conditional-text-generation
|
18 |
+
- sequence-modeling
|
19 |
+
task_ids:
|
20 |
+
- dialogue-modeling
|
21 |
+
- machine-translation
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for The Hong Kong Cantonese Corpus (HKCanCor)
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Dataset Description](#dataset-description)
|
28 |
+
- [Dataset Summary](#dataset-summary)
|
29 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
30 |
+
- [Languages](#languages)
|
31 |
+
- [Dataset Structure](#dataset-structure)
|
32 |
+
- [Data Instances](#data-instances)
|
33 |
+
- [Data Fields](#data-instances)
|
34 |
+
- [Data Splits](#data-instances)
|
35 |
+
- [Dataset Creation](#dataset-creation)
|
36 |
+
- [Curation Rationale](#curation-rationale)
|
37 |
+
- [Source Data](#source-data)
|
38 |
+
- [Annotations](#annotations)
|
39 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
40 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
41 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
42 |
+
- [Discussion of Biases](#discussion-of-biases)
|
43 |
+
- [Other Known Limitations](#other-known-limitations)
|
44 |
+
- [Additional Information](#additional-information)
|
45 |
+
- [Dataset Curators](#dataset-curators)
|
46 |
+
- [Licensing Information](#licensing-information)
|
47 |
+
- [Citation Information](#citation-information)
|
48 |
+
|
49 |
+
## Dataset Description
|
50 |
+
|
51 |
+
- **Homepage:** http://compling.hss.ntu.edu.sg/hkcancor/
|
52 |
+
- **Repository:** https://github.com/fcbond/hkcancor
|
53 |
+
- **Paper:** [Luke and Wang, 2015](https://github.com/fcbond/hkcancor/blob/master/data/LukeWong_Hong-Kong-Cantonese-Corpus.pdf)
|
54 |
+
- **Leaderboard:** N/A
|
55 |
+
- **Point of Contact:** Luke Kang Kwong
|
56 |
+
|
57 |
+
### Dataset Summary
|
58 |
+
The Hong Kong Cantonese Corpus (HKCanCor) comprise transcribed conversations recorded
|
59 |
+
between March 1997 and August 1998. It contains recordings of spontaneous speech (51 texts)
|
60 |
+
and radio programmes (42 texts), which involve 2 to 4 speakers, with 1 text of monologue.
|
61 |
+
|
62 |
+
In total, the corpus contains around 230,000 Chinese words. The text is word-segmented (i.e., tokenization is at word-level, and each token can span multiple Chinese characters). Tokens are annotated with part-of-speech (POS) tags and romanised Cantonese pronunciation.
|
63 |
+
|
64 |
+
* Romanisation
|
65 |
+
* Follows conventions set by the Linguistic Society of Hong Kong (LSHK).
|
66 |
+
* POS
|
67 |
+
* The tagset used by this corpus extends the one in the Peita-Fujitsu-Renmin Ribao (PRF) corpus (Duan et al., 2000). Extensions were made to further capture Cantonese-specific phenomena.
|
68 |
+
* To facilitate everyday usage and for better comparability across languages and/or corpora, this dataset also includes the tags mapped to the [Universal Dependencies 2.0](https://universaldependencies.org/u/pos/index.html) format. This mapping references the [PyCantonese](https://github.com/jacksonllee/pycantonese) library.
|
69 |
+
|
70 |
+
|
71 |
+
### Supported Tasks and Leaderboards
|
72 |
+
[More Information Needed]
|
73 |
+
|
74 |
+
### Languages
|
75 |
+
Yue Chinese / Cantonese (Hong Kong).
|
76 |
+
|
77 |
+
## Dataset Structure
|
78 |
+
This corpus has 10801 utterances and approximately 230000 Chinese words.
|
79 |
+
There is no predefined split.
|
80 |
+
|
81 |
+
### Data Instances
|
82 |
+
Each instance contains a conversation id, speaker id within that conversation,
|
83 |
+
turn number, part-of-speech tag for each Chinese word in the PRF format and UD2.0 format,
|
84 |
+
and the utterance written in Chinese characters as well as its LSHK format romanisation.
|
85 |
+
|
86 |
+
|
87 |
+
For example:
|
88 |
+
```python
|
89 |
+
{
|
90 |
+
'conversation_id': 'TNR016-DR070398-HAI6V'
|
91 |
+
'pos_tags_prf': ['v', 'w'],
|
92 |
+
'pos_tags_ud': ['VERB', 'PUNCT'],
|
93 |
+
'speaker': 'B',
|
94 |
+
'transcriptions': ['hai6', 'VQ1'],
|
95 |
+
'turn_number': 112,
|
96 |
+
'tokens': ['係', '。']
|
97 |
+
}
|
98 |
+
```
|
99 |
+
|
100 |
+
### Data Fields
|
101 |
+
- conversation_id: unique dialogue-level id
|
102 |
+
- pos_tags_prf: POS tag using the PRF format at token-level
|
103 |
+
- pos_tag_ud: POS tag using the UD2.0 format at token-level
|
104 |
+
- speaker: unique speaker id within dialogue
|
105 |
+
- transcriptions: token-level romanisation in the LSHK format
|
106 |
+
- turn_number: turn number in dialogue
|
107 |
+
- tokens: Chinese word or punctuation at token-level
|
108 |
+
|
109 |
+
### Data Splits
|
110 |
+
There are no specified splits in this dataset.
|
111 |
+
|
112 |
+
## Dataset Creation
|
113 |
+
|
114 |
+
### Curation Rationale
|
115 |
+
|
116 |
+
[More Information Needed]
|
117 |
+
|
118 |
+
### Source Data
|
119 |
+
|
120 |
+
#### Initial Data Collection and Normalization
|
121 |
+
|
122 |
+
[More Information Needed]
|
123 |
+
|
124 |
+
#### Who are the source language producers?
|
125 |
+
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
### Annotations
|
129 |
+
|
130 |
+
#### Annotation process
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
#### Who are the annotators?
|
135 |
+
|
136 |
+
[More Information Needed]
|
137 |
+
|
138 |
+
### Personal and Sensitive Information
|
139 |
+
|
140 |
+
[More Information Needed]
|
141 |
+
|
142 |
+
## Considerations for Using the Data
|
143 |
+
|
144 |
+
### Social Impact of Dataset
|
145 |
+
|
146 |
+
[More Information Needed]
|
147 |
+
|
148 |
+
### Discussion of Biases
|
149 |
+
|
150 |
+
[More Information Needed]
|
151 |
+
|
152 |
+
### Other Known Limitations
|
153 |
+
|
154 |
+
[More Information Needed]
|
155 |
+
|
156 |
+
## Additional Information
|
157 |
+
|
158 |
+
### Dataset Curators
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
### Licensing Information
|
163 |
+
This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/deed.ast).
|
164 |
+
|
165 |
+
|
166 |
+
### Citation Information
|
167 |
+
This corpus was developed by [Luke and Wong, 2015](http://compling.hss.ntu.edu.sg/hkcancor/data/LukeWong_Hong-Kong-Cantonese-Corpus.pdf).
|
168 |
+
```
|
169 |
+
@article{luke2015hong,
|
170 |
+
author={Luke, Kang-Kwong and Wong, May LY},
|
171 |
+
title={The Hong Kong Cantonese corpus: design and uses},
|
172 |
+
journal={Journal of Chinese Linguistics},
|
173 |
+
year={2015},
|
174 |
+
pages={309-330},
|
175 |
+
month={12}
|
176 |
+
}
|
177 |
+
```
|
178 |
+
The POS tagset to Universal Dependency tagset mapping is provided by Jackson Lee, as a part of the [PyCantonese](https://github.com/jacksonllee/pycantonese) library.
|
179 |
+
```
|
180 |
+
@misc{lee2020,
|
181 |
+
author = {Lee, Jackson},
|
182 |
+
title = {PyCantonese: Cantonese Linguistics and NLP in Python},
|
183 |
+
year = {2020},
|
184 |
+
publisher = {GitHub},
|
185 |
+
journal = {GitHub repository},
|
186 |
+
howpublished = {\url{https://github.com/jacksonllee/pycantonese}},
|
187 |
+
commit = {1d58f44e1cb097faa69de6b617e1d28903b84b98}
|
188 |
+
}
|
189 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "The Hong Kong Cantonese Corpus (HKCanCor) comprise transcribed conversations\nrecorded between March 1997 and August 1998. It contains recordings of\nspontaneous speech (51 texts) and radio programmes (42 texts),\nwhich involve 2 to 4 speakers, with 1 text of monologue.\n\nIn total, the corpus contains around 230,000 Chinese words.\nThe text is word-segmented, annotated with part-of-speech (POS) tags and\nromanised Cantonese pronunciation.\n\nRomanisation scheme - Linguistic Society of Hong Kong (LSHK)\nPOS scheme - Peita-Fujitsu-Renmin Ribao (PRF) corpus (Duan et al., 2000),\n with extended tags for Cantonese-specific phenomena added by\n Luke and Wang (see original paper for details).\n", "citation": "@article{luke2015hong,\n author={Luke, Kang-Kwong and Wong, May LY},\n title={The Hong Kong Cantonese corpus: design and uses},\n journal={Journal of Chinese Linguistics},\n year={2015},\n pages={309-330},\n month={12}\n}\n@misc{lee2020,\n author = {Lee, Jackson},\n title = {PyCantonese: Cantonese Linguistics and NLP in Python},\n year = {2020},\n publisher = {GitHub},\n journal = {GitHub repository},\n howpublished = {https://github.com/jacksonllee/pycantonese},\n commit = {1d58f44e1cb097faa69de6b617e1d28903b84b98}\n}\n", "homepage": "http://compling.hss.ntu.edu.sg/hkcancor/", "license": "CC BY 4.0", "features": {"conversation_id": {"dtype": "string", "id": null, "_type": "Value"}, "speaker": {"dtype": "string", "id": null, "_type": "Value"}, "turn_number": {"dtype": "int16", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "transcriptions": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags_prf": {"feature": {"num_classes": 120, "names": ["!", "\"", "#", "'", ",", "-", ".", "...", "?", "A", "AD", "AG", "AIRWAYS0", "AN", "AND", "B", "BG", "BEAN0", "C", "CENTRE0", "CG", "D", "D1", "DG", "E", "ECHO0", "F", "G", "G1", "G2", "H", "HILL0", "I", "IG", "J", "JB", "JM", "JN", "JNS", "JNT", "JNZ", "K", "KONG", "L", "L1", "LG", "M", "MG", "MONTY0", "MOUNTAIN0", "N", "N1", "NG", "NR", "NS", "NSG", "NT", "NX", "NZ", "O", "P", "PEPPER0", "Q", "QG", "R", "RG", "S", "SOUND0", "T", "TELECOM0", "TG", "TOUCH0", "U", "UG", "U0", "V", "V1", "VD", "VG", "VK", "VN", "VU", "VUG", "W", "X", "XA", "XB", "XC", "XD", "XE", "XJ", "XJB", "XJN", "XJNT", "XJNZ", "XJV", "XJA", "XL1", "XM", "XN", "XNG", "XNR", "XNS", "XNT", "XNX", "XNZ", "XO", "XP", "XQ", "XR", "XS", "XT", "XV", "XVG", "XVN", "XX", "Y", "YG", "Y1", "Z"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags_ud": {"feature": {"num_classes": 16, "names": ["DET", "PRON", "VERB", "NOUN", "ADJ", "PUNCT", "INTJ", "ADV", "V", "PART", "X", "NUM", "PROPN", "AUX", "CCONJ", "ADP"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "hkcancor", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5746381, "num_examples": 10801, "dataset_name": "hkcancor"}}, "download_checksums": {"http://compling.hss.ntu.edu.sg/hkcancor/data/hkcancor-utf8.zip": {"num_bytes": 961514, "checksum": "09223963b8756254e15353cad843f8a4b0cbc4b9223dc8a8fa27fb1cf846057e"}}, "download_size": 961514, "post_processing_size": null, "dataset_size": 5746381, "size_in_bytes": 6707895}}
|
dummy/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac3b79bc1b7bb337ff108efb54a2d0c11cd9163eeed64680e511961e6d2df262
|
3 |
+
size 36493
|
hkcancor.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Hong Kong Cantonese Corpus (HKCanCor)."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import os
|
20 |
+
import xml.etree.ElementTree as ET
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@article{luke2015hong,
|
27 |
+
author={Luke, Kang-Kwong and Wong, May LY},
|
28 |
+
title={The Hong Kong Cantonese corpus: design and uses},
|
29 |
+
journal={Journal of Chinese Linguistics},
|
30 |
+
year={2015},
|
31 |
+
pages={309-330},
|
32 |
+
month={12}
|
33 |
+
}
|
34 |
+
@misc{lee2020,
|
35 |
+
author = {Lee, Jackson},
|
36 |
+
title = {PyCantonese: Cantonese Linguistics and NLP in Python},
|
37 |
+
year = {2020},
|
38 |
+
publisher = {GitHub},
|
39 |
+
journal = {GitHub repository},
|
40 |
+
howpublished = {https://github.com/jacksonllee/pycantonese},
|
41 |
+
commit = {1d58f44e1cb097faa69de6b617e1d28903b84b98}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
The Hong Kong Cantonese Corpus (HKCanCor) comprise transcribed conversations
|
47 |
+
recorded between March 1997 and August 1998. It contains recordings of
|
48 |
+
spontaneous speech (51 texts) and radio programmes (42 texts),
|
49 |
+
which involve 2 to 4 speakers, with 1 text of monologue.
|
50 |
+
|
51 |
+
In total, the corpus contains around 230,000 Chinese words.
|
52 |
+
The text is word-segmented, annotated with part-of-speech (POS) tags and
|
53 |
+
romanised Cantonese pronunciation.
|
54 |
+
|
55 |
+
Romanisation scheme - Linguistic Society of Hong Kong (LSHK)
|
56 |
+
POS scheme - Peita-Fujitsu-Renmin Ribao (PRF) corpus (Duan et al., 2000),
|
57 |
+
with extended tags for Cantonese-specific phenomena added by
|
58 |
+
Luke and Wang (see original paper for details).
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "http://compling.hss.ntu.edu.sg/hkcancor/"
|
62 |
+
|
63 |
+
_LICENSE = "CC BY 4.0"
|
64 |
+
|
65 |
+
_URL = "http://compling.hss.ntu.edu.sg/hkcancor/data/hkcancor-utf8.zip"
|
66 |
+
|
67 |
+
|
68 |
+
class Hkcancor(datasets.GeneratorBasedBuilder):
|
69 |
+
"""Hong Kong Cantonese Corpus (HKCanCor)."""
|
70 |
+
|
71 |
+
VERSION = datasets.Version("1.0.0")
|
72 |
+
|
73 |
+
# Original tagset has 110 + tags and includes fine-grained annotations,
|
74 |
+
# e.g., distinguish morphemes vs non-moprhemes. For practical purposes
|
75 |
+
# (usability, comparing across datasets), Lee 2020 mapped HKCanCor tags
|
76 |
+
# to the Universal Dependencies 2.0 scheme. The following is adapted from:
|
77 |
+
# https://github.com/jacksonllee/pycantonese/blob/master/pycantonese/pos_tagging/hkcancor_to_ud.py
|
78 |
+
|
79 |
+
pos_map = {
|
80 |
+
"!": "PUNCT",
|
81 |
+
'"': "PUNCT",
|
82 |
+
"#": "X",
|
83 |
+
"'": "PUNCT",
|
84 |
+
",": "PUNCT",
|
85 |
+
"-": "PUNCT",
|
86 |
+
".": "PUNCT",
|
87 |
+
"...": "PUNCT",
|
88 |
+
"?": "PUNCT",
|
89 |
+
"A": "ADJ", # HKCanCor: Adjective
|
90 |
+
"AD": "ADV", # HKCanCor: Adjective as Adverbial
|
91 |
+
"AG": "ADJ", # HKCanCor: Adjective Morpheme
|
92 |
+
"AIRWAYS0": "PROPN",
|
93 |
+
"AN": "NOUN", # HKCanCor: Adjective with Nominal Function
|
94 |
+
"AND": "PROPN", # In one instance of "Chilli and Pepper"
|
95 |
+
"B": "ADJ", # HKCanCor: Non-predicate Adjective
|
96 |
+
"BG": "ADJ", # HKCanCor: Non-predicate Adjective Morpheme
|
97 |
+
"BEAN0": "PROPN", # In one instance of "Mr Bean"
|
98 |
+
"C": "CCONJ", # HKCanCor: Conjunction
|
99 |
+
"CENTRE0": "NOUN", # In one instance of "career centre"
|
100 |
+
"CG": "CCONJ",
|
101 |
+
"D": "ADV", # HKCanCor: Adverb
|
102 |
+
"D1": "ADV", # Most instances are gwai2 "ghost".
|
103 |
+
"DG": "ADV", # HKCanCor: Adverb Morpheme
|
104 |
+
"E": "INTJ", # HKCanCor: Interjection
|
105 |
+
"ECHO0": "PROPN", # In one instance of "Big Echo"
|
106 |
+
"F": "ADV", # HKCanCor: Directional Locality
|
107 |
+
"G": "X", # HKCanCor: Morpheme
|
108 |
+
"G1": "V", # The first A in the "A-not-AB" pattern, where AB is a verb.
|
109 |
+
"G2": "ADJ", # The first A in "A-not-AB", where AB is an adjective.
|
110 |
+
"H": "PROPN", # HKCanCor: Prefix (aa3 阿 followed by a person name)
|
111 |
+
"HILL0": "PROPN", # In "Benny Hill"
|
112 |
+
"I": "X", # HKCanCor: Idiom
|
113 |
+
"IG": "X",
|
114 |
+
"J": "NOUN", # HKCanCor: Abbreviation
|
115 |
+
"JB": "ADJ",
|
116 |
+
"JM": "NOUN",
|
117 |
+
"JN": "NOUN",
|
118 |
+
"JNS": "PROPN",
|
119 |
+
"JNT": "PROPN",
|
120 |
+
"JNZ": "PROPN",
|
121 |
+
"K": "X", # HKCanCor: Suffix (sing3 性 for nouns; dei6 地 for adverbs)
|
122 |
+
"KONG": "PROPN", # In "Hong Kong"
|
123 |
+
"L": "X", # Fixed Expression
|
124 |
+
"L1": "X",
|
125 |
+
"LG": "X",
|
126 |
+
"M": "NUM", # HKCanCor: Numeral
|
127 |
+
"MG": "X",
|
128 |
+
"MONTY0": "PROPN", # In "Full Monty"
|
129 |
+
"MOUNTAIN0": "PROPN", # In "Blue Mountain"
|
130 |
+
"N": "NOUN", # Common Noun
|
131 |
+
"N1": "DET", # HKCanCor: only used for ne1 呢; determiner
|
132 |
+
"NG": "NOUN",
|
133 |
+
"NR": "PROPN", # HKCanCor: Personal Name
|
134 |
+
"NS": "PROPN", # HKCanCor: Place Name
|
135 |
+
"NSG": "PROPN",
|
136 |
+
"NT": "PROPN", # HKCanCor: Organization Name
|
137 |
+
"NX": "NOUN", # HKCanCor: Nominal Character String
|
138 |
+
"NZ": "PROPN", # HKCanCor: Other Proper Noun
|
139 |
+
"O": "X", # HKCanCor: Onomatopoeia
|
140 |
+
"P": "ADP", # HKCanCor: Preposition
|
141 |
+
"PEPPER0": "PROPN", # In "Chilli and Pepper"
|
142 |
+
"Q": "NOUN", # HKCanCor: Classifier
|
143 |
+
"QG": "NOUN", # HKCanCor: Classifier Morpheme
|
144 |
+
"R": "PRON", # HKCanCor: Pronoun
|
145 |
+
"RG": "PRON", # HKCanCor: Pronoun Morpheme
|
146 |
+
"S": "NOUN", # HKCanCor: Space Word
|
147 |
+
"SOUND0": "PROPN", # In "Manchester's Sound"
|
148 |
+
"T": "ADV", # HKCanCor: Time Word
|
149 |
+
"TELECOM0": "PROPN", # In "Hong Kong Telecom"
|
150 |
+
"TG": "ADV", # HKCanCor: Time Word Morpheme
|
151 |
+
"TOUCH0": "PROPN", # In "Don't Touch" (a magazine)
|
152 |
+
"U": "PART", # HKCanCor: Auxiliary (e.g., ge3 嘅 after an attributive adj)
|
153 |
+
"UG": "PART", # HKCanCor: Auxiliary Morpheme
|
154 |
+
"U0": "PROPN", # U as in "Hong Kong U" (= The University of Hong Kong)
|
155 |
+
"V": "VERB", # HKCanCor: Verb
|
156 |
+
"V1": "VERB",
|
157 |
+
"VD": "ADV", # HKCanCor: Verb as Adverbial
|
158 |
+
"VG": "VERB",
|
159 |
+
"VK": "VERB",
|
160 |
+
"VN": "NOUN", # HKCanCor: Verb with Nominal Function
|
161 |
+
"VU": "AUX",
|
162 |
+
"VUG": "AUX",
|
163 |
+
"W": "PUNCT", # HKCanCor: Punctuation
|
164 |
+
"X": "X", # HKCanCor: Unclassified Item
|
165 |
+
"XA": "ADJ",
|
166 |
+
"XB": "ADJ",
|
167 |
+
"XC": "CCONJ",
|
168 |
+
"XD": "ADV",
|
169 |
+
"XE": "INTJ",
|
170 |
+
"XJ": "X",
|
171 |
+
"XJB": "PROPN",
|
172 |
+
"XJN": "NOUN",
|
173 |
+
"XJNT": "PROPN",
|
174 |
+
"XJNZ": "PROPN",
|
175 |
+
"XJV": "VERB",
|
176 |
+
"XJA": "X",
|
177 |
+
"XL1": "INTJ",
|
178 |
+
"XM": "NUM",
|
179 |
+
"XN": "NOUN",
|
180 |
+
"XNG": "NOUN",
|
181 |
+
"XNR": "PROPN",
|
182 |
+
"XNS": "PROPN",
|
183 |
+
"XNT": "PROPN",
|
184 |
+
"XNX": "NOUN",
|
185 |
+
"XNZ": "PROPN",
|
186 |
+
"XO": "X",
|
187 |
+
"XP": "ADP",
|
188 |
+
"XQ": "NOUN",
|
189 |
+
"XR": "PRON",
|
190 |
+
"XS": "PROPN",
|
191 |
+
"XT": "NOUN",
|
192 |
+
"XV": "VERB",
|
193 |
+
"XVG": "VERB",
|
194 |
+
"XVN": "NOUN",
|
195 |
+
"XX": "X",
|
196 |
+
"Y": "PART", # HKCanCor: Modal Particle
|
197 |
+
"YG": "PART", # HKCanCor: Modal Particle Morpheme
|
198 |
+
"Y1": "PART",
|
199 |
+
"Z": "ADJ", # HKCanCor: Descriptive
|
200 |
+
}
|
201 |
+
|
202 |
+
def _info(self):
|
203 |
+
|
204 |
+
pos_tags_prf = datasets.Sequence(datasets.features.ClassLabel(names=[tag for tag in self.pos_map.keys()]))
|
205 |
+
|
206 |
+
pos_tags_ud = datasets.Sequence(
|
207 |
+
datasets.features.ClassLabel(names=[tag for tag in set(self.pos_map.values())])
|
208 |
+
)
|
209 |
+
|
210 |
+
features = datasets.Features(
|
211 |
+
{
|
212 |
+
"conversation_id": datasets.Value("string"),
|
213 |
+
"speaker": datasets.Value("string"),
|
214 |
+
"turn_number": datasets.Value("int16"),
|
215 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
216 |
+
"transcriptions": datasets.Sequence(datasets.Value("string")),
|
217 |
+
"pos_tags_prf": pos_tags_prf,
|
218 |
+
"pos_tags_ud": pos_tags_ud,
|
219 |
+
}
|
220 |
+
)
|
221 |
+
|
222 |
+
return datasets.DatasetInfo(
|
223 |
+
description=_DESCRIPTION,
|
224 |
+
features=features,
|
225 |
+
supervised_keys=None,
|
226 |
+
homepage=_HOMEPAGE,
|
227 |
+
license=_LICENSE,
|
228 |
+
citation=_CITATION,
|
229 |
+
)
|
230 |
+
|
231 |
+
def _split_generators(self, dl_manager):
|
232 |
+
"""Returns SplitGenerators."""
|
233 |
+
data_dir = os.path.join(dl_manager.download_and_extract(_URL), "utf8")
|
234 |
+
|
235 |
+
return [
|
236 |
+
datasets.SplitGenerator(
|
237 |
+
name=datasets.Split.TRAIN,
|
238 |
+
gen_kwargs={
|
239 |
+
"data_dir": data_dir,
|
240 |
+
"split": "train",
|
241 |
+
},
|
242 |
+
)
|
243 |
+
]
|
244 |
+
|
245 |
+
def _generate_examples(self, data_dir, split):
|
246 |
+
""" Yields examples. """
|
247 |
+
|
248 |
+
downloaded_files = [os.path.join(data_dir, fn) for fn in sorted(os.listdir(data_dir))]
|
249 |
+
for filepath in downloaded_files:
|
250 |
+
# Each file in the corpus contains one conversation
|
251 |
+
with open(filepath, encoding="utf-8") as f:
|
252 |
+
xml = f.read()
|
253 |
+
# Add dummy root node to form valid tree
|
254 |
+
xml = "<root>" + xml + "</root>"
|
255 |
+
tree = ET.fromstring(xml)
|
256 |
+
|
257 |
+
# Extract dialogue metadata
|
258 |
+
info = [line.strip() for line in tree.find("info").text.split("\n") if line and not line.endswith("END")]
|
259 |
+
tape_number = "".join(info[0].split("-")[1:])
|
260 |
+
date_recorded = "".join(info[1].split("-")[1:])
|
261 |
+
|
262 |
+
turn_number = -1
|
263 |
+
for sent in tree.findall("sent"):
|
264 |
+
for child in sent.iter():
|
265 |
+
if child.tag == "sent_head":
|
266 |
+
current_speaker = child.text.strip()[:-1]
|
267 |
+
turn_number += 1
|
268 |
+
elif child.tag == "sent_tag":
|
269 |
+
tokens = []
|
270 |
+
pos_prf = []
|
271 |
+
pos_ud = []
|
272 |
+
transcriptions = []
|
273 |
+
current_sentence = [w.strip() for w in child.text.split("\n") if w and not w.isspace()]
|
274 |
+
for w in current_sentence:
|
275 |
+
token_data = w.split("/")
|
276 |
+
tokens.append(token_data[0])
|
277 |
+
transcriptions.append(token_data[2])
|
278 |
+
|
279 |
+
prf_tag = token_data[1].upper()
|
280 |
+
ud_tag = self.pos_map.get(prf_tag, "X")
|
281 |
+
pos_prf.append(prf_tag)
|
282 |
+
pos_ud.append(ud_tag)
|
283 |
+
|
284 |
+
num_tokens = len(tokens)
|
285 |
+
num_pos_tags = len(pos_prf)
|
286 |
+
num_transcriptions = len(transcriptions)
|
287 |
+
|
288 |
+
assert len(tokens) == len(
|
289 |
+
pos_prf
|
290 |
+
), "Sizes do not match: {nw} vs {np} for tokens vs pos-tags in {fp}".format(
|
291 |
+
nw=num_tokens, np=num_pos_tags, fp=filepath
|
292 |
+
)
|
293 |
+
assert len(pos_prf) == len(
|
294 |
+
transcriptions
|
295 |
+
), "Sizes do not match: {np} vs {nt} for tokens vs pos-tags in {fp}".format(
|
296 |
+
np=num_pos_tags, nt=num_transcriptions, fp=filepath
|
297 |
+
)
|
298 |
+
|
299 |
+
# Corpus doesn't come with conversation-level ids, and
|
300 |
+
# multiple texts can correspond to the same tape number,
|
301 |
+
# date, and speakers.
|
302 |
+
# The following workaround prepends metadata with the
|
303 |
+
# first few transcriptions in the conversation
|
304 |
+
# to create an identifier.
|
305 |
+
id_from_transcriptions = "".join(transcriptions[:5])[:5].upper()
|
306 |
+
id_ = "{tn}-{rd}-{it}".format(tn=tape_number, rd=date_recorded, it=id_from_transcriptions)
|
307 |
+
yield id_, {
|
308 |
+
"conversation_id": id_,
|
309 |
+
"speaker": current_speaker,
|
310 |
+
"turn_number": turn_number,
|
311 |
+
"tokens": tokens,
|
312 |
+
"transcriptions": transcriptions,
|
313 |
+
"pos_tags_prf": pos_prf,
|
314 |
+
"pos_tags_ud": pos_ud,
|
315 |
+
}
|