File size: 1,258 Bytes
319a838 1e1bd43 903243d 1e1bd43 903243d 1e1bd43 2ea43c4 1e1bd43 2ea43c4 1e1bd43 2ea43c4 1e1bd43 2ea43c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
---
license: cc-by-4.0
language:
- en
tags:
- climate
pretty_name: BioMassters
size_categories:
- 100K<n<1M
---
# BioMassters: A Benchmark Dataset for Forest Biomass Estimation using Multi-modal Satellite Time-series [https://nascetti-a.github.io/BioMasster/]
The objective of this repository is to provide a deep learning ready dataset to predict yearly Above Ground Biomass (AGB) for Finnish forests using multi-temporal satellite imagery from
the European Space Agency and European Commission's joint Sentinel-1 and Sentinel-2 satellite missions, designed to collect a rich array of Earth observation data
### Reference data:
* Reference AGB measurements were collected using LiDAR (Light Detection and Ranging) calibrated with in-situ measurements.
* Total 13000 patches, each patch covering 2,560 by 2,560 meter area.
### Feature data:
* Sentinel-1 SAR and Sentinel-2 MSI data
* 12 months of data (1 image per month)
* Total 310,000 patches
### Data Specifications:
![img](./Data_specifications.png)
### Data Size:
```
dataset | # files | size
--------------------------------------
train_features | 189078 | 215.9GB
test_features | 63348 | 73.0GB
train_agbm | 8689 | 2.1GB
```
## Citation : under review
|