File size: 5,370 Bytes
5bd4c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset class for Food-101 dataset."""

import json
from pathlib import Path

import datasets
from datasets.tasks import ImageClassification


_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"

_HOMEPAGE = "https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/"

_DESCRIPTION = (
    "This dataset consists of 101 food categories, with 101'000 images. For "
    "each class, 250 manually reviewed test images are provided as well as 750"
    " training images. On purpose, the training images were not cleaned, and "
    "thus still contain some amount of noise. This comes mostly in the form of"
    " intense colors and sometimes wrong labels. All images were rescaled to "
    "have a maximum side length of 512 pixels."
)

_CITATION = """\
 @inproceedings{bossard14,
  title = {Food-101 -- Mining Discriminative Components with Random Forests},
  author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
  booktitle = {European Conference on Computer Vision},
  year = {2014}
}
"""

_NAMES = [
    "apple_pie",
    "baby_back_ribs",
    "baklava",
    "beef_carpaccio",
    "beef_tartare",
    "beet_salad",
    "beignets",
    "bibimbap",
    "bread_pudding",
    "breakfast_burrito",
    "bruschetta",
    "caesar_salad",
    "cannoli",
    "caprese_salad",
    "carrot_cake",
    "ceviche",
    "cheesecake",
    "cheese_plate",
    "chicken_curry",
    "chicken_quesadilla",
    "chicken_wings",
    "chocolate_cake",
    "chocolate_mousse",
    "churros",
    "clam_chowder",
    "club_sandwich",
    "crab_cakes",
    "creme_brulee",
    "croque_madame",
    "cup_cakes",
    "deviled_eggs",
    "donuts",
    "dumplings",
    "edamame",
    "eggs_benedict",
    "escargots",
    "falafel",
    "filet_mignon",
    "fish_and_chips",
    "foie_gras",
    "french_fries",
    "french_onion_soup",
    "french_toast",
    "fried_calamari",
    "fried_rice",
    "frozen_yogurt",
    "garlic_bread",
    "gnocchi",
    "greek_salad",
    "grilled_cheese_sandwich",
    "grilled_salmon",
    "guacamole",
    "gyoza",
    "hamburger",
    "hot_and_sour_soup",
    "hot_dog",
    "huevos_rancheros",
    "hummus",
    "ice_cream",
    "lasagna",
    "lobster_bisque",
    "lobster_roll_sandwich",
    "macaroni_and_cheese",
    "macarons",
    "miso_soup",
    "mussels",
    "nachos",
    "omelette",
    "onion_rings",
    "oysters",
    "pad_thai",
    "paella",
    "pancakes",
    "panna_cotta",
    "peking_duck",
    "pho",
    "pizza",
    "pork_chop",
    "poutine",
    "prime_rib",
    "pulled_pork_sandwich",
    "ramen",
    "ravioli",
    "red_velvet_cake",
    "risotto",
    "samosa",
    "sashimi",
    "scallops",
    "seaweed_salad",
    "shrimp_and_grits",
    "spaghetti_bolognese",
    "spaghetti_carbonara",
    "spring_rolls",
    "steak",
    "strawberry_shortcake",
    "sushi",
    "tacos",
    "takoyaki",
    "tiramisu",
    "tuna_tartare",
    "waffles",
]


class Food101(datasets.GeneratorBasedBuilder):
    """Food-101 Images dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "label"),
            homepage=_HOMEPAGE,
            task_templates=[ImageClassification(image_file_path_column="image", label_column="label", labels=_NAMES)],
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_path = Path(dl_manager.download_and_extract(_BASE_URL))
        meta_path = dl_path / "food-101" / "meta"
        image_dir_path = dl_path / "food-101" / "images"
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"json_file_path": meta_path / "train.json", "image_dir_path": image_dir_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"json_file_path": meta_path / "test.json", "image_dir_path": image_dir_path},
            ),
        ]

    def _generate_examples(self, json_file_path, image_dir_path):
        """Generate images and labels for splits."""
        labels = self.info.features["label"]
        data = json.loads(json_file_path.read_text())
        for label, images in data.items():
            for image_name in images:
                image = image_dir_path / f"{image_name}.jpg"
                features = {"image": str(image), "label": labels.encode_example(label)}
                yield image_name, features