File size: 3,467 Bytes
ef44f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from pathlib import Path

import datasets


_CITATION = """
@misc{imagenette,
  author    = "Jeremy Howard",
  title     = "imagenette",
  url       = "https://github.com/fastai/imagenette/"
}
"""

_DESCRIPTION = """\
Imagenette is a subset of 10 easily classified classes from the Imagenet
dataset. It was originally prepared by Jeremy Howard of FastAI. The objective
behind putting together a small version of the Imagenet dataset was mainly
because running new ideas/algorithms/experiments on the whole Imagenet take a
lot of time.
This version of the dataset allows researchers/practitioners to quickly try out
ideas and share with others. The dataset comes in three variants:
  * Full size
  * 320 px
  * 160 px
Note: The v2 config correspond to the new 70/30 train/valid split (released
in Dec 6 2019).
"""

_LABELS_FNAME = "image_classification/imagenette_labels.txt"
_URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/"

LABELS = [
    "n01440764",
    "n02102040",
    "n02979186",
    "n03000684",
    "n03028079",
    "n03394916",
    "n03417042",
    "n03425413",
    "n03445777",
    "n03888257"
]

class ImagenetteConfig(datasets.BuilderConfig):
  """BuilderConfig for Imagenette."""

  def __init__(self, size, base, **kwargs):
    super(ImagenetteConfig, self).__init__(
        # `320px-v2`,...
        name=size + ("-v2" if base == "imagenette2" else ""),
        description="{} variant.".format(size),
        **kwargs)
    # e.g. `imagenette2-320.tgz`
    self.dirname = base + {
        "full-size": "",
        "320px": "-320",
        "160px": "-160",
    }[size]


def _make_builder_configs():
  configs = []
  for base in ["imagenette2", "imagenette"]:
    for size in ["full-size", "320px", "160px"]:
      configs.append(ImagenetteConfig(base=base, size=size))
  return configs


class Imagenette(datasets.GeneratorBasedBuilder):
  """A smaller subset of 10 easily classified classes from Imagenet."""

  VERSION = datasets.Version("1.0.0")

  BUILDER_CONFIGS = _make_builder_configs()

  def _info(self):
    return datasets.DatasetInfo(
        # builder=self,
        description=_DESCRIPTION,
        features=datasets.Features({
            "image_file_path": datasets.Value("string"),
            "labels": datasets.ClassLabel(names=LABELS)
        }),
        supervised_keys=("image_file_path", "labels"),
        homepage="https://github.com/fastai/imagenette",
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager):
    """Returns SplitGenerators."""
    print(self.__dict__.keys())
    print(self.config)
    dirname = self.config.dirname
    url = _URL_PREFIX + "{}.tgz".format(dirname)
    path = dl_manager.download_and_extract(url)
    train_path = os.path.join(path, dirname, "train")
    val_path = os.path.join(path, dirname, "val")
    assert os.path.exists(train_path)
    return [
        datasets.SplitGenerator(
            name=datasets.Split.TRAIN,
            gen_kwargs={
                "datapath": train_path,
            },
        ),
        datasets.SplitGenerator(
            name=datasets.Split.VALIDATION,
            gen_kwargs={
                "datapath": val_path,
            },
        ),
    ]

  def _generate_examples(self, datapath):
    """Yields examples."""
    for path in Path(datapath).glob("**/*.JPEG"):
        record = {
            "image_file_path": str(path),
            "labels": path.parent.name
        }
        yield path.name, record