nave cohen commited on
Commit
617fccf
1 Parent(s): 896f56b

dataset-card update

Browse files
Files changed (1) hide show
  1. dataset.py +59 -5
dataset.py CHANGED
@@ -1,7 +1,61 @@
1
- from datasets import load_dataset
 
 
2
 
3
- # Load your dataset (make sure this path is correct and the dataset loads successfully)
4
- dataset = load_dataset("imagefolder", data_dir="C:/Users/nave1/Desktop/Final-project/Urban-Climate/data")
5
 
6
- # Push the dataset to the Hugging Face Hub
7
- dataset.push_to_hub("nave1616/urban_climate_dataset")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from datasets import GeneratorBasedBuilder, DatasetInfo, Features, Image, Value, SplitGenerator
4
 
5
+ class UrbanClimateDataset(GeneratorBasedBuilder):
6
+ """Urban Climate Dataset for building detection."""
7
 
8
+ VERSION = "1.0.0"
9
+
10
+ def _info(self):
11
+ return DatasetInfo(
12
+ description="Dataset for building detection in urban environments using image segmentation.",
13
+ features=Features({
14
+ "file_name": Value("string"),
15
+ "image": Image(),
16
+ "mask": Image(),
17
+ "type": Value("string"),
18
+ }),
19
+ supervised_keys=None,
20
+ homepage="https://huggingface.co/datasets/nave1616/urban_climate_dataset",
21
+ license="CC BY-SA 4.0",
22
+ citation="""@article{your_citation}"""
23
+ )
24
+
25
+ def _split_generators(self, dl_manager):
26
+ """Specify data splits."""
27
+ base_path = dl_manager.download_and_extract(self.config.data_dir)
28
+
29
+ return [
30
+ SplitGenerator(
31
+ name="train",
32
+ gen_kwargs={"files_dir": os.path.join(base_path, "train")},
33
+ ),
34
+ SplitGenerator(
35
+ name="validation",
36
+ gen_kwargs={"files_dir": os.path.join(base_path, "validation")},
37
+ ),
38
+ SplitGenerator(
39
+ name="test",
40
+ gen_kwargs={"files_dir": os.path.join(base_path, "test")},
41
+ ),
42
+ ]
43
+
44
+ def _generate_examples(self, files_dir):
45
+ """Generate examples from metadata CSV files."""
46
+ metadata_path = os.path.join(files_dir, 'metadata.csv')
47
+ df = pd.read_csv(metadata_path)
48
+ for idx, row in df.iterrows():
49
+ image_path = os.path.join(files_dir, row["file_name"])
50
+ # Assume that mask images are in the same directory and have the same name with a different prefix
51
+ if row['type'] == 'image':
52
+ mask_path = image_path.replace('image', 'mask') # Replace to get the corresponding mask path
53
+ else:
54
+ mask_path = image_path
55
+
56
+ yield idx, {
57
+ "file_name": row["file_name"],
58
+ "image": image_path if row['type'] == 'image' else None,
59
+ "mask": mask_path if row['type'] == 'mask' else None,
60
+ "type": row["type"],
61
+ }