|
import os |
|
import re |
|
import csv |
|
import json |
|
import time |
|
import argparse |
|
import requests |
|
import sys |
|
import numpy as np |
|
import pandas as pd |
|
from pathlib import Path |
|
from tqdm.auto import tqdm |
|
from easydict import EasyDict |
|
from collections import defaultdict, Counter |
|
import pathlib |
|
import textwrap |
|
import os.path as osp |
|
import math |
|
|
|
import openai |
|
from openai import AzureOpenAI,OpenAI |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, LlamaTokenizer, pipeline, AutoConfig, BitsAndBytesConfig |
|
from transformers.generation.utils import GenerationConfig |
|
from peft import PeftModel, PeftConfig |
|
import torch |
|
import anthropic |
|
from typing import Union |
|
import google.generativeai as genai |
|
from google.generativeai.types import safety_types |
|
from google.oauth2 import service_account |
|
import vertexai |
|
from vertexai.language_models import TextGenerationModel |
|
import anthropic |
|
from anthropic import HUMAN_PROMPT, AI_PROMPT |
|
import cohere |
|
from together import Together |
|
|
|
MODEL_PATHS = { |
|
"gpt-3.5-turbo-0125":"gpt-3.5-turbo-0125", |
|
"gpt-4-0125-preview":"gpt-4-0125-preview", |
|
"gpt-4-1106-preview":"gpt-4-1106-preview", |
|
"aya-101":"CohereForAI/aya-101", |
|
"gemini-pro":"gemini-pro", |
|
"gemini-1.5-pro":"gemini-1.5-pro-latest", |
|
'Orion-14B-Chat':'OrionStarAI/Orion-14B-Chat', |
|
"claude-3-opus-20240229":'claude-3-opus-20240229', |
|
"claude-3-sonnet-20240229":'claude-3-sonnet-20240229', |
|
"claude-3-haiku-20240307":'claude-3-haiku-20240307', |
|
'Qwen1.5-72B-Chat':'Qwen/Qwen1.5-72B-Chat', |
|
'Qwen1.5-14B-Chat':'Qwen/Qwen1.5-14B-Chat' , |
|
'Qwen1.5-32B-Chat':'Qwen/Qwen1.5-32B-Chat' , |
|
'text-bison-002':'text-bison@002', |
|
'c4ai-command-r-v01':'CohereForAI/c4ai-command-r-v01', |
|
'c4ai-command-r-plus':'command-r-plus', |
|
'Mixtral-8x7B-Instruct-v0.1':'mistralai/Mixtral-8x7B-Instruct-v0.1', |
|
'aya-23':'CohereForAI/aya-23-35B', |
|
'SeaLLM-7B-v2.5':'SeaLLMs/SeaLLM-7B-v2.5', |
|
'Merak-7B-v4':'Ichsan2895/Merak-7B-v4', |
|
'jais-13b-chat':'core42/jais-13b-chat', |
|
} |
|
|
|
COUNTRY_LANG = { |
|
"UK": "English", |
|
"US": "English", |
|
"South_Korea": "Korean", |
|
"Algeria": "Arabic", |
|
"China": "Chinese", |
|
"Indonesia": "Indonesian", |
|
"Spain": "Spanish", |
|
"Iran": "Persian", |
|
"Mexico":"Spanish", |
|
"Assam":"Assamese", |
|
"Greece":"Greek", |
|
"Ethiopia":"Amharic", |
|
"Northern_Nigeria":"Hausa", |
|
"Azerbaijan":"Azerbaijani", |
|
"North_Korea":"Korean", |
|
"West_Java":"Sundanese" |
|
} |
|
|
|
|
|
def get_tokenizer_model(model_name,model_path,model_cache_dir): |
|
tokenizer,model = None,None |
|
|
|
if 'gpt' not in model_name and 'gemini' not in model_name and 'claude' not in model_name and 'bison' not in model_name and 'command' not in model_name and 'Qwen' not in model_name: |
|
if 'llama' in model_name.lower(): |
|
tokenizer = LlamaTokenizer.from_pretrained(model_path, use_fast=False,token=os.getenv("HF_TOKEN")) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", |
|
torch_dtype=torch.float16, |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path),token=os.getenv("HF_TOKEN")) |
|
|
|
elif 'Orion' in model_name or 'polylm' in model_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True ,torch_dtype=torch.bfloat16, |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
|
|
elif 'aya' in model_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if '23' in model_name: |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",token=os.getenv("HF_TOKEN"), |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
else: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, device_map="auto", |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
|
|
elif 'mala' in model_name.lower(): |
|
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf',token=os.getenv("HF_TOKEN"), device_map="auto", |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
base_model.resize_token_embeddings(260164) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path,token=os.getenv("HF_TOKEN")) |
|
model = PeftModel.from_pretrained(base_model, model_path, device_map="auto", |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
elif 'mistral' in model_path.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,token=os.getenv("HF_TOKEN")) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path),token=os.getenv("HF_TOKEN")) |
|
|
|
elif 'merak' in model_path.lower(): |
|
config = AutoConfig.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_path) |
|
|
|
elif 'jais' in model_path.lower(): |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
|
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", |
|
resume_download=True, |
|
cache_dir=os.path.join(model_cache_dir,model_path)) |
|
|
|
return tokenizer,model |
|
|
|
class Prompter(object): |
|
__slots__ = ("template", "_verbose") |
|
|
|
def __init__(self, template_name: str = "", verbose: bool = False): |
|
self._verbose = verbose |
|
if not template_name: |
|
|
|
template_name = "alpaca" |
|
file_name = osp.join("templates", f"{template_name}.json") |
|
if not osp.exists(file_name): |
|
raise ValueError(f"Can't read {file_name}") |
|
with open(file_name) as fp: |
|
self.template = json.load(fp) |
|
if self._verbose: |
|
print( |
|
f"Using prompt template {template_name}: {self.template['description']}" |
|
) |
|
|
|
def generate_prompt( |
|
self, |
|
instruction: str, |
|
input: Union[None, str] = None, |
|
label: Union[None, str] = None, |
|
) -> str: |
|
|
|
|
|
if input: |
|
res = self.template["prompt_input"].format( |
|
instruction=instruction, input=input |
|
) |
|
else: |
|
res = self.template["prompt_no_input"].format( |
|
instruction=instruction |
|
) |
|
if label: |
|
res = f"{res}{label}" |
|
if self._verbose: |
|
print(res) |
|
return res |
|
|
|
def get_response(self, output: str) -> str: |
|
return output.split(self.template["response_split"])[1].strip() |
|
|
|
def get_together_response( |
|
text, |
|
model_name='Qwen/Qwen1.5-72B-Chat', |
|
temperature=1.0, |
|
top_p=1.0, |
|
max_tokens=512, |
|
greedy=False, |
|
num_sequence=1, |
|
max_try=10, |
|
dialogue_history=None |
|
): |
|
|
|
client = Together(api_key=os.getenv("TOGETHER_API_KEY")) |
|
n_try = 0 |
|
while True: |
|
if n_try == max_try: |
|
outputs = ["something wrong"] |
|
response = None |
|
break |
|
try: |
|
time.sleep(0.5) |
|
response = client.chat.completions.create( |
|
model=model_name, |
|
messages=[{"role": "user", "content": text}], |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
response = response.choices[0].message.content.strip() |
|
break |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
try: |
|
print(response) |
|
except: |
|
print('ERROR') |
|
print("Exception: Sleep for 10 sec") |
|
|
|
time.sleep(10) |
|
n_try += 1 |
|
continue |
|
|
|
return response |
|
|
|
def get_cohere_response( |
|
text, |
|
model_name='command-r-plus', |
|
temperature=1.0, |
|
top_p=1.0, |
|
max_tokens=512, |
|
greedy=False, |
|
num_sequence=1, |
|
max_try=10, |
|
dialogue_history=None |
|
): |
|
|
|
co = cohere.Client(os.getenv("COHERE_API_KEY")) |
|
|
|
n_try = 0 |
|
while True: |
|
if n_try == max_try: |
|
outputs = ["something wrong"] |
|
res = None |
|
break |
|
try: |
|
time.sleep(0.5) |
|
response = co.chat( |
|
model=model_name, |
|
message=text, |
|
temperature=temperature, |
|
p=top_p, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
res = response.text.strip() |
|
|
|
break |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
try: |
|
print(response) |
|
except: |
|
print('ERROR') |
|
print("Exception: Sleep for 10 sec") |
|
|
|
time.sleep(10) |
|
n_try += 1 |
|
continue |
|
|
|
return res |
|
|
|
def check_gpt_input_list(history): |
|
check = True |
|
for i, u in enumerate(history): |
|
if not isinstance(u, dict): |
|
check = False |
|
break |
|
|
|
if not u.get("role") or not u.get("content"): |
|
check = False |
|
break |
|
|
|
return check |
|
|
|
def get_gpt_response( |
|
text, |
|
model_name, |
|
temperature=1.0, |
|
top_p=1.0, |
|
max_tokens=None, |
|
greedy=False, |
|
num_sequence=1, |
|
max_try=10, |
|
dialogue_history=None |
|
): |
|
|
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"), |
|
organization=os.getenv("OPENAI_ORG_ID")) |
|
|
|
if (model_name.startswith("gpt-3.5-turbo") and 'instruct' not in model_name) or model_name.startswith("gpt-4"): |
|
if dialogue_history: |
|
if not check_gpt_input_list(dialogue_history): |
|
raise Exception("Input format is not compatible with chatgpt api! Please see https://platform.openai.com/docs/api-reference/chat") |
|
messages = dialogue_history |
|
else: |
|
messages = [] |
|
|
|
messages.append({'role': 'user', 'content': text}) |
|
|
|
prompt = { |
|
"model": model_name, |
|
"messages": messages, |
|
"temperature": 0. if greedy else temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"n": num_sequence |
|
} |
|
|
|
else: |
|
prompt = { |
|
"model": model_name, |
|
"prompt": text, |
|
"temperature": 0. if greedy else temperature, |
|
"top_p": top_p, |
|
"max_tokens": max_tokens, |
|
"n": num_sequence |
|
} |
|
|
|
n_try = 0 |
|
while True: |
|
if n_try == max_try: |
|
outputs = ["something wrong"] |
|
break |
|
|
|
try: |
|
if (model_name.startswith("gpt-3.5-turbo") and 'instruct' not in model_name) or model_name.startswith("gpt-4"): |
|
time.sleep(0.5) |
|
res = client.chat.completions.create(**prompt) |
|
outputs = [o['message']['content'].strip("\n ") for o in res['choices']] |
|
else: |
|
res = client.chat.completions.create(**prompt) |
|
outputs = [o['text'].strip("\n ") for o in res['choices']] |
|
break |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
n_try += 1 |
|
continue |
|
|
|
if len(outputs) == 1: |
|
outputs = outputs[0] |
|
return outputs |
|
|
|
def inference_azure(prompt,model_name,temperature=0,top_p=1,max_attempt=10): |
|
client = AzureOpenAI( |
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"), |
|
api_version=os.getenv("AZURE_OPENAI_API_VER"), |
|
azure_endpoint=os.getenv("AZURE_OPENAI_API_ENDPT"), |
|
) |
|
|
|
attempt = 0 |
|
while attempt < max_attempt: |
|
time.sleep(0.5) |
|
completion = None |
|
try: |
|
completion = client.chat.completions.create( |
|
model=model_name, |
|
temperature=temperature, |
|
top_p=top_p, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": prompt, |
|
}, |
|
], |
|
) |
|
res = completion.choices[0].message.content |
|
if res == None: |
|
attempt += 1 |
|
print(completion.choices[0].finish_reason) |
|
else: |
|
break |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
if attempt == max_attempt: |
|
if completion: |
|
return completion.choices[0].finish_reason |
|
else: |
|
return "openai.BadRequestError" |
|
return res.strip() |
|
|
|
def inference_claude(prompt,temperature=0,top_p=1,model_name="culture-gpt-4-1106-Preview",max_attempt=10): |
|
c = anthropic.Anthropic(api_key=os.getenv('CLAUDE_API_KEY')) |
|
|
|
attempt = 0 |
|
while attempt < max_attempt: |
|
time.sleep(0.5) |
|
completion = None |
|
try: |
|
message = c.messages.create( |
|
model=model_name, |
|
max_tokens=512, |
|
temperature=temperature, |
|
top_p=top_p, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": prompt |
|
} |
|
] |
|
) |
|
res = message.content[0].text |
|
if res == None: |
|
attempt += 1 |
|
print(message.stop_reason) |
|
time.sleep(10) |
|
else: |
|
break |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
if attempt == max_attempt: |
|
if message != None: |
|
return message.error.message |
|
else: |
|
return "UNKNOWN_ERROR" |
|
return res.strip() |
|
|
|
def model_inference(prompt,model_path,model,tokenizer,max_length=512): |
|
if 'Orion' in model_path: |
|
model.generation_config = GenerationConfig.from_pretrained(model_path) |
|
messages = [{"role": "user", "content": prompt}] |
|
result = model.chat(tokenizer, messages,streaming=False) |
|
result = result.replace(prompt,'').strip() |
|
|
|
if 'mistral' in model_path: |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") |
|
|
|
messages = messages = [{"role": "user", "content": prompt}] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(inputs, max_new_tokens=max_length) |
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
elif 'Qwen' in model_path: |
|
messages = messages = [{"role": "user", "content": prompt}] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=max_length |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
result = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
elif 'c4ai' in model_path: |
|
messages = [{"role": "user", "content": prompt}] |
|
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
gen_tokens = model.generate( |
|
input_ids, |
|
max_new_tokens=max_length, |
|
) |
|
|
|
s = tokenizer.decode(gen_tokens[0]) |
|
|
|
start_token = "<|CHATBOT_TOKEN|>" |
|
end_token = "<|END_OF_TURN_TOKEN|>" |
|
|
|
start_idx = s.find(start_token) + len(start_token) |
|
end_idx = s.find(end_token, start_idx) |
|
|
|
result = s[start_idx:end_idx] |
|
|
|
elif 'aya-23' in model_path: |
|
messages = [{"role": "user", "content": prompt}] |
|
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
gen_tokens = model.generate( |
|
input_ids, |
|
max_new_tokens=max_length, |
|
) |
|
|
|
s = tokenizer.decode(gen_tokens[0]) |
|
|
|
start_token = "<|CHATBOT_TOKEN|>" |
|
end_token = "<|END_OF_TURN_TOKEN|>" |
|
|
|
start_idx = s.find(start_token) + len(start_token) |
|
end_idx = s.find(end_token, start_idx) |
|
|
|
result = s[start_idx:end_idx] |
|
|
|
elif 'SeaLLM' in model_path: |
|
messages = [{"role": "user", "content": prompt}] |
|
|
|
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device) |
|
|
|
generated_ids = model.generate( |
|
input_ids, |
|
max_new_tokens=max_length, |
|
) |
|
s = tokenizer.batch_decode(generated_ids)[0] |
|
|
|
start_token = "<|im_start|>assistant\n" |
|
end_token = "<eos>" |
|
|
|
start_idx = s.find(start_token) + len(start_token) |
|
end_idx = s.find(end_token, start_idx) |
|
|
|
result = s[start_idx:end_idx] |
|
|
|
elif 'Merak' in model_path: |
|
messages = [{"role": "user", "content": prompt}] |
|
inputs = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).to(model.device) |
|
inputs = tokenizer(inputs, return_tensors="pt", return_attention_mask=True) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), |
|
attention_mask=inputs.attention_mask, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=max_length) |
|
response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] |
|
|
|
assistant_start = f'''{prompt} \n assistant\n ''' |
|
response_start = response.find(assistant_start) |
|
result = response[response_start + len(assistant_start) :].strip() |
|
|
|
elif 'jais' in model_path: |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
inputs = input_ids.to(model.device) |
|
input_len = inputs.shape[-1] |
|
generate_ids = model.generate( |
|
inputs, |
|
max_length=max_length, |
|
) |
|
result = tokenizer.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
)[0] |
|
|
|
else: |
|
input_ids = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to(model.device) |
|
outputs = model.generate(**input_ids,max_length=max_length) |
|
result = tokenizer.decode(outputs[0],skip_special_tokens=True) |
|
result = result.replace(prompt,'').strip() |
|
|
|
return result |
|
|
|
def get_gemini_response(prompt,model_name, |
|
temperature=0, |
|
top_p=1.0, |
|
greedy=False, |
|
max_attempt=10,): |
|
|
|
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
|
|
safety_settings=[ |
|
{ |
|
"category": category, |
|
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE, |
|
} for category in safety_types._NEW_HARM_CATEGORIES |
|
] |
|
|
|
generation_config = genai.types.GenerationConfig(temperature=temperature,top_p=top_p) |
|
model = genai.GenerativeModel(model_name,safety_settings) |
|
|
|
attempt = 0 |
|
while attempt < max_attempt: |
|
time.sleep(0.5) |
|
response = model.generate_content(prompt,generation_config=generation_config) |
|
try: |
|
response = model.generate_content(prompt,generation_config=generation_config) |
|
res = response.text |
|
break |
|
except ValueError: |
|
|
|
print(response.prompt_feedback) |
|
try: |
|
|
|
print(response.candidates[0].finish_reason) |
|
|
|
print(response.candidates[0].safety_ratings) |
|
except: |
|
print() |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
if '1.5' in model_name: |
|
print("Exception: Sleep for 70 sec") |
|
time.sleep(70) |
|
else: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
if attempt == max_attempt: |
|
if response: |
|
try: |
|
return response.candidates[0].finish_reason |
|
except: |
|
return response.prompt_feedback |
|
else: |
|
return "" |
|
return res.strip() |
|
|
|
def get_palm_response(prompt,model_name, |
|
temperature=1.0, |
|
top_p=1.0, |
|
greedy=False, |
|
max_attempt=10,): |
|
|
|
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
|
|
safety_settings=[ |
|
{ |
|
"category": category, |
|
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE, |
|
} for category in safety_types.HarmCategory if category.value < 7 |
|
] |
|
|
|
attempt = 0 |
|
while attempt < max_attempt: |
|
time.sleep(0.5) |
|
try: |
|
completion = genai.generate_text( |
|
model=model_name, |
|
prompt=prompt, |
|
temperature=temperature, |
|
safety_settings=safety_settings, |
|
top_p=top_p |
|
) |
|
|
|
res = completion.result |
|
if res == None: |
|
attempt += 1 |
|
print(completion.filters) |
|
print(completion.safety_feedback) |
|
continue |
|
break |
|
except ValueError: |
|
|
|
print(completion.filters) |
|
|
|
print(completion.safety_feedback) |
|
|
|
attempt += 1 |
|
continue |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
if attempt == max_attempt: |
|
return completion.filters |
|
return res.strip() |
|
|
|
def get_palm2_response(prompt,model_name, |
|
temperature=1.0, |
|
top_p=1.0, |
|
greedy=False, |
|
max_attempt=10,): |
|
credentials = service_account.Credentials.from_service_account_file(os.getenv('GOOGLE_APPLICATION_CREDENTIALS')) |
|
vertexai.init(project=os.getenv('GOOGLE_PROJECT_NAME'),credentials=credentials) |
|
|
|
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
|
|
safety_settings=[ |
|
{ |
|
"category": category, |
|
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE, |
|
} for category in safety_types.HarmCategory if category.value < 7 |
|
] |
|
model = TextGenerationModel.from_pretrained(model_name) |
|
parameters = { |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"max_output_tokens": 512 |
|
} |
|
|
|
attempt = 0 |
|
while attempt < max_attempt: |
|
time.sleep(0.5) |
|
try: |
|
response = model.predict( |
|
prompt, |
|
**parameters, |
|
) |
|
|
|
res = response.text |
|
|
|
if res == None: |
|
attempt += 1 |
|
print(response.is_blocked) |
|
print(response.safety_attributes) |
|
continue |
|
break |
|
except ValueError: |
|
print(response.is_blocked) |
|
print(response.safety_attributes) |
|
|
|
attempt += 1 |
|
continue |
|
except KeyboardInterrupt: |
|
raise Exception("KeyboardInterrupted!") |
|
except: |
|
print("Exception: Sleep for 10 sec") |
|
time.sleep(10) |
|
attempt += 1 |
|
continue |
|
if attempt == max_attempt: |
|
return response.safety_attributes |
|
return res.strip() |
|
|
|
def get_model_response(model_name,prompt,model,tokenizer,temperature,top_p,gpt_azure): |
|
|
|
if gpt_azure: |
|
gpt_inference = inference_azure |
|
else: |
|
gpt_inference = get_gpt_response |
|
|
|
if 'gpt' in model_name: |
|
response = gpt_inference(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
elif 'gemini' in model_name: |
|
response = get_gemini_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
elif 'bison' in model_name: |
|
response = get_palm2_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
elif 'claude' in model_name: |
|
response = inference_claude(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
elif 'command' in model_name: |
|
response = get_cohere_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
elif 'Qwen' in model_name: |
|
response = get_together_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p) |
|
else: |
|
response = model_inference(prompt,model_path=model_name,model=model,tokenizer=tokenizer) |
|
|
|
return response |
|
|
|
def get_json_str(response,return_list=False): |
|
"""Extract json object from LLM response |
|
|
|
Args: |
|
response (str): LLM response with JSON format included |
|
|
|
Returns: |
|
dict: Extracted json (dict) object |
|
""" |
|
|
|
try: |
|
response = response.replace('\n','') |
|
if "{" not in response: |
|
print(response) |
|
return response |
|
|
|
if return_list: |
|
jsons = re.findall(r'\[\s*{.+}\s*\]',response) |
|
|
|
json_list = [] |
|
json_object = json.loads(jsons[-1]) |
|
else: |
|
jsons = re.findall(r'{[^}]+}',response) |
|
|
|
response = jsons[0] |
|
response = response.replace('```json','').replace('`','').replace('\n','').replace(',}','}') |
|
json_object = json.loads(response) |
|
except: |
|
return response |
|
|
|
|
|
return json_object |
|
|
|
def import_google_sheet(id,gid=0,file_path='google_sheet_tmp.csv',overwrite=False): |
|
|
|
url = f'https://docs.google.com/spreadsheets/d/{id}/export?format=csv&gid={gid}' |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
with open(file_path, 'wb') as f: |
|
f.write(response.content) |
|
print('CSV file saved to: {}'.format(file_path)) |
|
else: |
|
print(f'Error downloading Google Sheet: {response.status_code}') |
|
sys.exit(1) |
|
|
|
df = pd.read_csv(file_path) |
|
return df |
|
|
|
def read_jsonl(filename): |
|
js = [] |
|
with open(filename) as f: |
|
for line in f.readlines(): |
|
js.append(json.loads(line)) |
|
|
|
return js |
|
|
|
def write_csv_row(values,filename): |
|
open_trial = 0 |
|
|
|
while True: |
|
if open_trial > 10: |
|
raise Exception("something wrong") |
|
|
|
try: |
|
with open(filename, "a", encoding="utf-8") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(values) |
|
break |
|
except: |
|
print("open failed") |
|
continue |
|
|
|
def replace_country_name(s,country): |
|
return s.replace('your country',country) |
|
|
|
def str2bool(v): |
|
if isinstance(v, bool): |
|
return v |
|
if v.lower() in ('True','yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('False','no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
|
def is_time_format(s): |
|
""" |
|
Check if the given string matches the '%d%d:%d%d' time format. |
|
|
|
Args: |
|
s (str): The string to check. |
|
|
|
Returns: |
|
bool: True if the string matches the format, False otherwise. |
|
""" |
|
|
|
pattern = r"^\d\d:\d\d$" |
|
return bool(re.match(pattern, s)) |
|
|
|
def is_date_format(s): |
|
""" |
|
Check if the given string matches the '%d%d/%d%d' time format. |
|
|
|
Args: |
|
s (str): The string to check. |
|
|
|
Returns: |
|
bool: True if the string matches the format, False otherwise. |
|
""" |
|
|
|
pattern = r"^\d{1,2}/\d{1,2}$" |
|
return bool(re.match(pattern, s)) |
|
|
|
def is_float(s): |
|
""" |
|
Check if the given string can be converted to a float. |
|
|
|
Args: |
|
s (str): The string to check. |
|
|
|
Returns: |
|
bool: True if the string can be converted to a float, False otherwise. |
|
""" |
|
try: |
|
float(s) |
|
return True |
|
except ValueError: |
|
return False |