Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
BLEnD / utils.py
nayeon212's picture
ADD: Data & Code
605bdce verified
import os
import re
import csv
import json
import time
import argparse
import requests
import sys
import numpy as np
import pandas as pd
from pathlib import Path
from tqdm.auto import tqdm
from easydict import EasyDict
from collections import defaultdict, Counter
import pathlib
import textwrap
import os.path as osp
import math
import openai
from openai import AzureOpenAI,OpenAI
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, LlamaTokenizer, pipeline, AutoConfig, BitsAndBytesConfig
from transformers.generation.utils import GenerationConfig
from peft import PeftModel, PeftConfig
import torch
import anthropic
from typing import Union
import google.generativeai as genai
from google.generativeai.types import safety_types
from google.oauth2 import service_account
import vertexai
from vertexai.language_models import TextGenerationModel
import anthropic
from anthropic import HUMAN_PROMPT, AI_PROMPT
import cohere
from together import Together
MODEL_PATHS = {
"gpt-3.5-turbo-0125":"gpt-3.5-turbo-0125",
"gpt-4-0125-preview":"gpt-4-0125-preview",
"gpt-4-1106-preview":"gpt-4-1106-preview",
"aya-101":"CohereForAI/aya-101",
"gemini-pro":"gemini-pro",
"gemini-1.5-pro":"gemini-1.5-pro-latest",
'Orion-14B-Chat':'OrionStarAI/Orion-14B-Chat',
"claude-3-opus-20240229":'claude-3-opus-20240229',
"claude-3-sonnet-20240229":'claude-3-sonnet-20240229',
"claude-3-haiku-20240307":'claude-3-haiku-20240307',
'Qwen1.5-72B-Chat':'Qwen/Qwen1.5-72B-Chat',
'Qwen1.5-14B-Chat':'Qwen/Qwen1.5-14B-Chat' ,
'Qwen1.5-32B-Chat':'Qwen/Qwen1.5-32B-Chat' ,
'text-bison-002':'text-bison@002',
'c4ai-command-r-v01':'CohereForAI/c4ai-command-r-v01',
'c4ai-command-r-plus':'command-r-plus',
'Mixtral-8x7B-Instruct-v0.1':'mistralai/Mixtral-8x7B-Instruct-v0.1',
'aya-23':'CohereForAI/aya-23-35B',
'SeaLLM-7B-v2.5':'SeaLLMs/SeaLLM-7B-v2.5',
'Merak-7B-v4':'Ichsan2895/Merak-7B-v4',
'jais-13b-chat':'core42/jais-13b-chat',
}
COUNTRY_LANG = {
"UK": "English",
"US": "English",
"South_Korea": "Korean",
"Algeria": "Arabic",
"China": "Chinese",
"Indonesia": "Indonesian",
"Spain": "Spanish",
"Iran": "Persian",
"Mexico":"Spanish",
"Assam":"Assamese",
"Greece":"Greek",
"Ethiopia":"Amharic",
"Northern_Nigeria":"Hausa",
"Azerbaijan":"Azerbaijani",
"North_Korea":"Korean",
"West_Java":"Sundanese"
}
def get_tokenizer_model(model_name,model_path,model_cache_dir):
tokenizer,model = None,None
if 'gpt' not in model_name and 'gemini' not in model_name and 'claude' not in model_name and 'bison' not in model_name and 'command' not in model_name and 'Qwen' not in model_name:
if 'llama' in model_name.lower():
tokenizer = LlamaTokenizer.from_pretrained(model_path, use_fast=False,token=os.getenv("HF_TOKEN"))
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",
torch_dtype=torch.float16,
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path),token=os.getenv("HF_TOKEN"))
elif 'Orion' in model_name or 'polylm' in model_name:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True ,torch_dtype=torch.bfloat16,
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
elif 'aya' in model_name:
tokenizer = AutoTokenizer.from_pretrained(model_path)
if '23' in model_name:
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",token=os.getenv("HF_TOKEN"),
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
else:
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, device_map="auto",
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
elif 'mala' in model_name.lower():
base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf',token=os.getenv("HF_TOKEN"), device_map="auto",
cache_dir=os.path.join(model_cache_dir,model_path))
base_model.resize_token_embeddings(260164)
tokenizer = AutoTokenizer.from_pretrained(model_path,token=os.getenv("HF_TOKEN"))
model = PeftModel.from_pretrained(base_model, model_path, device_map="auto",
cache_dir=os.path.join(model_cache_dir,model_path))
elif 'mistral' in model_path.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False,token=os.getenv("HF_TOKEN"))
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path),token=os.getenv("HF_TOKEN"))
elif 'merak' in model_path.lower():
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="auto",
trust_remote_code=True,
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
tokenizer = LlamaTokenizer.from_pretrained(model_path)
elif 'jais' in model_path.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="auto",
trust_remote_code=True,
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",
resume_download=True,
cache_dir=os.path.join(model_cache_dir,model_path))
return tokenizer,model
class Prompter(object):
__slots__ = ("template", "_verbose")
def __init__(self, template_name: str = "", verbose: bool = False):
self._verbose = verbose
if not template_name:
# Enforce the default here, so the constructor can be called with '' and will not break.
template_name = "alpaca"
file_name = osp.join("templates", f"{template_name}.json")
if not osp.exists(file_name):
raise ValueError(f"Can't read {file_name}")
with open(file_name) as fp:
self.template = json.load(fp)
if self._verbose:
print(
f"Using prompt template {template_name}: {self.template['description']}"
)
def generate_prompt(
self,
instruction: str,
input: Union[None, str] = None,
label: Union[None, str] = None,
) -> str:
# returns the full prompt from instruction and optional input
# if a label (=response, =output) is provided, it's also appended.
if input:
res = self.template["prompt_input"].format(
instruction=instruction, input=input
)
else:
res = self.template["prompt_no_input"].format(
instruction=instruction
)
if label:
res = f"{res}{label}"
if self._verbose:
print(res)
return res
def get_response(self, output: str) -> str:
return output.split(self.template["response_split"])[1].strip()
def get_together_response(
text,
model_name='Qwen/Qwen1.5-72B-Chat',
temperature=1.0,
top_p=1.0,
max_tokens=512,
greedy=False,
num_sequence=1,
max_try=10,
dialogue_history=None
):
client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
n_try = 0
while True:
if n_try == max_try:
outputs = ["something wrong"]
response = None
break
try:
time.sleep(0.5)
response = client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": text}],
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
)
response = response.choices[0].message.content.strip()
break
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
try:
print(response)
except:
print('ERROR')
print("Exception: Sleep for 10 sec")
time.sleep(10)
n_try += 1
continue
return response
def get_cohere_response(
text,
model_name='command-r-plus',
temperature=1.0,
top_p=1.0,
max_tokens=512,
greedy=False,
num_sequence=1,
max_try=10,
dialogue_history=None
):
co = cohere.Client(os.getenv("COHERE_API_KEY"))
n_try = 0
while True:
if n_try == max_try:
outputs = ["something wrong"]
res = None
break
try:
time.sleep(0.5)
response = co.chat(
model=model_name,
message=text,
temperature=temperature,
p=top_p,
max_tokens=max_tokens,
)
res = response.text.strip()
break
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
try:
print(response)
except:
print('ERROR')
print("Exception: Sleep for 10 sec")
time.sleep(10)
n_try += 1
continue
return res
def check_gpt_input_list(history):
check = True
for i, u in enumerate(history):
if not isinstance(u, dict):
check = False
break
if not u.get("role") or not u.get("content"):
check = False
break
return check
def get_gpt_response(
text,
model_name,
temperature=1.0,
top_p=1.0,
max_tokens=None,
greedy=False,
num_sequence=1,
max_try=10,
dialogue_history=None
):
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"),
organization=os.getenv("OPENAI_ORG_ID"))
if (model_name.startswith("gpt-3.5-turbo") and 'instruct' not in model_name) or model_name.startswith("gpt-4"):
if dialogue_history:
if not check_gpt_input_list(dialogue_history):
raise Exception("Input format is not compatible with chatgpt api! Please see https://platform.openai.com/docs/api-reference/chat")
messages = dialogue_history
else:
messages = []
messages.append({'role': 'user', 'content': text})
prompt = {
"model": model_name,
"messages": messages,
"temperature": 0. if greedy else temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"n": num_sequence
}
else:
prompt = {
"model": model_name,
"prompt": text,
"temperature": 0. if greedy else temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"n": num_sequence
}
n_try = 0
while True:
if n_try == max_try:
outputs = ["something wrong"]
break
try:
if (model_name.startswith("gpt-3.5-turbo") and 'instruct' not in model_name) or model_name.startswith("gpt-4"):
time.sleep(0.5)
res = client.chat.completions.create(**prompt)
outputs = [o['message']['content'].strip("\n ") for o in res['choices']]
else:
res = client.chat.completions.create(**prompt)
outputs = [o['text'].strip("\n ") for o in res['choices']]
break
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
print("Exception: Sleep for 10 sec")
time.sleep(10)
n_try += 1
continue
if len(outputs) == 1:
outputs = outputs[0]
return outputs
def inference_azure(prompt,model_name,temperature=0,top_p=1,max_attempt=10):
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VER"),
azure_endpoint=os.getenv("AZURE_OPENAI_API_ENDPT"),
)
attempt = 0
while attempt < max_attempt:
time.sleep(0.5)
completion = None
try:
completion = client.chat.completions.create(
model=model_name,
temperature=temperature,
top_p=top_p,
messages=[
{
"role": "user",
"content": prompt,
},
],
)
res = completion.choices[0].message.content
if res == None:
attempt += 1
print(completion.choices[0].finish_reason)
else:
break
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
print("Exception: Sleep for 10 sec")
time.sleep(10)
attempt += 1
continue
if attempt == max_attempt:
if completion:
return completion.choices[0].finish_reason
else:
return "openai.BadRequestError"
return res.strip()
def inference_claude(prompt,temperature=0,top_p=1,model_name="culture-gpt-4-1106-Preview",max_attempt=10):
c = anthropic.Anthropic(api_key=os.getenv('CLAUDE_API_KEY'))
attempt = 0
while attempt < max_attempt:
time.sleep(0.5)
completion = None
try:
message = c.messages.create(
model=model_name,
max_tokens=512,
temperature=temperature,
top_p=top_p,
messages=[
{
"role": "user",
"content": prompt
}
]
)
res = message.content[0].text
if res == None:
attempt += 1
print(message.stop_reason)
time.sleep(10)
else:
break
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
print("Exception: Sleep for 10 sec")
time.sleep(10)
attempt += 1
continue
if attempt == max_attempt:
if message != None:
return message.error.message
else:
return "UNKNOWN_ERROR"
return res.strip()
def model_inference(prompt,model_path,model,tokenizer,max_length=512):
if 'Orion' in model_path:
model.generation_config = GenerationConfig.from_pretrained(model_path)
messages = [{"role": "user", "content": prompt}]
result = model.chat(tokenizer, messages,streaming=False)
result = result.replace(prompt,'').strip()
if 'mistral' in model_path:
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
messages = messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=max_length)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
elif 'Qwen' in model_path:
messages = messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=max_length
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
result = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
elif 'c4ai' in model_path:
messages = [{"role": "user", "content": prompt}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
gen_tokens = model.generate(
input_ids,
max_new_tokens=max_length,
)
s = tokenizer.decode(gen_tokens[0])
start_token = "<|CHATBOT_TOKEN|>"
end_token = "<|END_OF_TURN_TOKEN|>"
start_idx = s.find(start_token) + len(start_token)
end_idx = s.find(end_token, start_idx)
result = s[start_idx:end_idx]
elif 'aya-23' in model_path:
messages = [{"role": "user", "content": prompt}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
gen_tokens = model.generate(
input_ids,
max_new_tokens=max_length,
)
s = tokenizer.decode(gen_tokens[0])
start_token = "<|CHATBOT_TOKEN|>"
end_token = "<|END_OF_TURN_TOKEN|>"
start_idx = s.find(start_token) + len(start_token)
end_idx = s.find(end_token, start_idx)
result = s[start_idx:end_idx]
elif 'SeaLLM' in model_path:
messages = [{"role": "user", "content": prompt}]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device)
generated_ids = model.generate(
input_ids,
max_new_tokens=max_length,
)
s = tokenizer.batch_decode(generated_ids)[0]
start_token = "<|im_start|>assistant\n"
end_token = "<eos>"
start_idx = s.find(start_token) + len(start_token)
end_idx = s.find(end_token, start_idx)
result = s[start_idx:end_idx]
elif 'Merak' in model_path:
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).to(model.device)
inputs = tokenizer(inputs, return_tensors="pt", return_attention_mask=True)
with torch.no_grad():
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"),
attention_mask=inputs.attention_mask,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
max_new_tokens=max_length)
response = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
assistant_start = f'''{prompt} \n assistant\n '''
response_start = response.find(assistant_start)
result = response[response_start + len(assistant_start) :].strip()
elif 'jais' in model_path:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
inputs = input_ids.to(model.device)
input_len = inputs.shape[-1]
generate_ids = model.generate(
inputs,
max_length=max_length,
)
result = tokenizer.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
else:
input_ids = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to(model.device)
outputs = model.generate(**input_ids,max_length=max_length)
result = tokenizer.decode(outputs[0],skip_special_tokens=True)
result = result.replace(prompt,'').strip()
return result
def get_gemini_response(prompt,model_name,
temperature=0,
top_p=1.0,
greedy=False,
max_attempt=10,):
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
safety_settings=[
{
"category": category,
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE,
} for category in safety_types._NEW_HARM_CATEGORIES
]
generation_config = genai.types.GenerationConfig(temperature=temperature,top_p=top_p)
model = genai.GenerativeModel(model_name,safety_settings)
attempt = 0
while attempt < max_attempt:
time.sleep(0.5)
response = model.generate_content(prompt,generation_config=generation_config)
try:
response = model.generate_content(prompt,generation_config=generation_config)
res = response.text
break
except ValueError:
# If the response doesn't contain text, check if the prompt was blocked.
print(response.prompt_feedback)
try:
# Also check the finish reason to see if the response was blocked.
print(response.candidates[0].finish_reason)
# If the finish reason was SAFETY, the safety ratings have more details.
print(response.candidates[0].safety_ratings)
except:
print()
time.sleep(10)
attempt += 1
continue
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
if '1.5' in model_name:
print("Exception: Sleep for 70 sec")
time.sleep(70)
else:
print("Exception: Sleep for 10 sec")
time.sleep(10)
attempt += 1
continue
if attempt == max_attempt:
if response:
try:
return response.candidates[0].finish_reason
except:
return response.prompt_feedback
else:
return ""
return res.strip()
def get_palm_response(prompt,model_name,
temperature=1.0,
top_p=1.0,
greedy=False,
max_attempt=10,):
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
safety_settings=[
{
"category": category,
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE,
} for category in safety_types.HarmCategory if category.value < 7
]
attempt = 0
while attempt < max_attempt:
time.sleep(0.5)
try:
completion = genai.generate_text(
model=model_name,
prompt=prompt,
temperature=temperature,
safety_settings=safety_settings,
top_p=top_p
)
res = completion.result
if res == None:
attempt += 1
print(completion.filters)
print(completion.safety_feedback)
continue
break
except ValueError:
# If the response doesn't contain text, check if the prompt was blocked.
print(completion.filters)
# Also check the finish reason to see if the response was blocked.
print(completion.safety_feedback)
attempt += 1
continue
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
print("Exception: Sleep for 10 sec")
time.sleep(10)
attempt += 1
continue
if attempt == max_attempt:
return completion.filters
return res.strip()
def get_palm2_response(prompt,model_name,
temperature=1.0,
top_p=1.0,
greedy=False,
max_attempt=10,):
credentials = service_account.Credentials.from_service_account_file(os.getenv('GOOGLE_APPLICATION_CREDENTIALS'))
vertexai.init(project=os.getenv('GOOGLE_PROJECT_NAME'),credentials=credentials)
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
safety_settings=[
{
"category": category,
"threshold": safety_types.HarmBlockThreshold.BLOCK_NONE,
} for category in safety_types.HarmCategory if category.value < 7
]
model = TextGenerationModel.from_pretrained(model_name)
parameters = {
"temperature": temperature, # Temperature controls the degree of randomness in token selection.
"top_p": top_p, # Tokens are selected from most probable to least until the sum of their probabilities equals the top_p value.
"max_output_tokens": 512
}
attempt = 0
while attempt < max_attempt:
time.sleep(0.5)
try:
response = model.predict(
prompt,
**parameters,
)
res = response.text
if res == None:
attempt += 1
print(response.is_blocked)
print(response.safety_attributes)
continue
break
except ValueError:
print(response.is_blocked)
print(response.safety_attributes)
attempt += 1
continue
except KeyboardInterrupt:
raise Exception("KeyboardInterrupted!")
except:
print("Exception: Sleep for 10 sec")
time.sleep(10)
attempt += 1
continue
if attempt == max_attempt:
return response.safety_attributes
return res.strip()
def get_model_response(model_name,prompt,model,tokenizer,temperature,top_p,gpt_azure):
if gpt_azure:
gpt_inference = inference_azure
else:
gpt_inference = get_gpt_response
if 'gpt' in model_name:
response = gpt_inference(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
elif 'gemini' in model_name:
response = get_gemini_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
elif 'bison' in model_name:
response = get_palm2_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
elif 'claude' in model_name:
response = inference_claude(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
elif 'command' in model_name:
response = get_cohere_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
elif 'Qwen' in model_name:
response = get_together_response(prompt,model_name=model_name,temperature=temperature,top_p=top_p)
else:
response = model_inference(prompt,model_path=model_name,model=model,tokenizer=tokenizer)
return response
def get_json_str(response,return_list=False):
"""Extract json object from LLM response
Args:
response (str): LLM response with JSON format included
Returns:
dict: Extracted json (dict) object
"""
try:
response = response.replace('\n','')
if "{" not in response:
print(response)
return response
if return_list:
jsons = re.findall(r'\[\s*{.+}\s*\]',response)
json_list = []
json_object = json.loads(jsons[-1])
else:
jsons = re.findall(r'{[^}]+}',response)
response = jsons[0]
response = response.replace('```json','').replace('`','').replace('\n','').replace(',}','}')
json_object = json.loads(response)
except:
return response
return json_object
def import_google_sheet(id,gid=0,file_path='google_sheet_tmp.csv',overwrite=False):
url = f'https://docs.google.com/spreadsheets/d/{id}/export?format=csv&gid={gid}'
response = requests.get(url)
if response.status_code == 200:
with open(file_path, 'wb') as f:
f.write(response.content)
print('CSV file saved to: {}'.format(file_path))
else:
print(f'Error downloading Google Sheet: {response.status_code}')
sys.exit(1)
df = pd.read_csv(file_path)
return df
def read_jsonl(filename):
js = []
with open(filename) as f: # jsonl 형식임
for line in f.readlines():
js.append(json.loads(line)) ## json 라이브러리 이용
return js
def write_csv_row(values,filename):
open_trial = 0
while True:
if open_trial > 10:
raise Exception("something wrong")
try:
with open(filename, "a", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(values)
break
except:
print("open failed")
continue
def replace_country_name(s,country):
return s.replace('your country',country)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('True','yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('False','no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def is_time_format(s):
"""
Check if the given string matches the '%d%d:%d%d' time format.
Args:
s (str): The string to check.
Returns:
bool: True if the string matches the format, False otherwise.
"""
# Regular expression to match exactly two digits, a colon, and then exactly two more digits
pattern = r"^\d\d:\d\d$"
return bool(re.match(pattern, s))
def is_date_format(s):
"""
Check if the given string matches the '%d%d/%d%d' time format.
Args:
s (str): The string to check.
Returns:
bool: True if the string matches the format, False otherwise.
"""
# Regular expression to match exactly two digits, a colon, and then exactly two more digits
pattern = r"^\d{1,2}/\d{1,2}$"
return bool(re.match(pattern, s))
def is_float(s):
"""
Check if the given string can be converted to a float.
Args:
s (str): The string to check.
Returns:
bool: True if the string can be converted to a float, False otherwise.
"""
try:
float(s) # Try converting the string to a float
return True
except ValueError: # If conversion to float fails, it raises ValueError
return False