Datasets:
File size: 12,258 Bytes
f1b5d0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Standard
import os
import sys
import shutil
import argparse
# PIP
from tqdm import tqdm
import random
import pandas as pd
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import torch
from torch import nn
from torch.utils.data import DataLoader
from datasets import Dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, T5Tokenizer,T5ForConditionalGeneration
from transformers import AdamW, get_linear_schedule_with_warmup
# Custom
from config import Config
from dataset import CSV2Dataset, batch_sampling
parser = argparse.ArgumentParser()
parser.add_argument('--config_file', type=str, help='Config file name')
parser.add_argument('--model', type=str, default=None, help='Model name')
parser.add_argument('--checkpoint_filename', type=str, default=None)
parser.add_argument('--best_filename', type=str, default=None)
parser.add_argument('--train_data', type=str, default=None)
parser.add_argument('--val_data', type=str, default=None,
help='Train Label column name')
parser.add_argument('--test_data', type=str, default=None,
help='Train Label column name')
parser.add_argument('--test_res', type=str, default=None,
help='Train Label column name')
parser.add_argument('--sent_col', type=str, )
parser.add_argument('--label_col', type=str, default=None,
help='Train Label column name')
parser.add_argument('--num_labels', type=str, default=None)
parser.add_argument('--test_res_col', type=str, default=None,
help='Test result column name')
parser.add_argument('--test_col', type=str,)
parser.add_argument('--train', type=str, default=None,
help='Train Label column name')
parser.add_argument('--evaluate', type=str, default=None,
help='Train Label column name')
parser.add_argument('--test', type=str, default=None,
help='Train Label column name')
parser.add_argument('--resume', type=str, default=None,
help='Train Label column name')
parser.add_argument('--resume_model', type=str, default=None,
help='Train Label column name')
args = parser.parse_args()
def save_checkpoint(state, is_best, filename, best_filename):
if is_best:
print('Best F1 Updated -- Saving Best Checkpoint')
torch.save(state, best_filename)
def train(train_loader, model, optimizer, scheduler, epoch, epochs):
model.train()
total_loss, total_accuracy = 0, 0
print("-"*30)
loop = tqdm(train_loader, leave=True)
for (input_ids,attention_mask),labels in loop:
optimizer.zero_grad()
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
if 't5' in cfg.model:
lm_label = labels[0].to(device)
label_mask = labels[1].to(device)
outputs = model(input_ids, attention_mask=attention_mask,
labels=lm_label, decoder_attention_mask = label_mask)
else:
labels = labels.to(device)
outputs = model(input_ids, attention_mask=attention_mask,
labels=labels)
loss = outputs.loss.mean()
total_loss += loss.item()
outputs.loss.mean().backward()
loop.set_description(f'Epoch {epoch}')
loop.set_postfix(loss=loss.item())
optimizer.step()
scheduler.step()
avg_loss = total_loss / len(train_loader)
print(f" {epoch+1} Epoch Average train loss : {avg_loss}")
def validate(valid_loader, model, tokenizer):
model.eval()
total_true = []
total_pred = []
real_total_true = []
real_total_pred = []
loop = tqdm(valid_loader, leave=True)
for (input_ids,attention_mask),labels in loop:
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
with torch.no_grad():
if 't5' in cfg.model:
lm_label = labels[0].to(device)
label_mask = labels[1].to(device)
outputs = model.module.generate(input_ids, attention_mask=attention_mask,max_length=3)
pred = [tokenizer.decode(label) for label in outputs]
pred = [l.replace('<pad>','').replace(' ','')[0] for l in pred]
try:
_pred = [int(l) for l in pred]
pred = _pred
except:
_pred = []
for l in pred:
if l == '0' or l == '1':
_pred.append(int(l))
else:
_pred.append(l)
pred = _pred
lm_label[lm_label[:, :] == -100] = tokenizer.pad_token_id
true = [tokenizer.decode(label) for label in lm_label]
true = [int(l[0]) for l in true]
_pred = []
_true = []
for i in range(len(true)):
if type(pred[i]) is int:
_pred.append(pred[i])
_true.append(true[i])
else:
labels = labels.to(device)
outputs = model(input_ids, attention_mask=attention_mask,
labels=labels)
pred = [torch.argmax(logit).cpu().detach().item() for logit in outputs.logits]
true = [label for label in labels.cpu().numpy()]
total_true += true
total_pred += pred
if 't5' in cfg.model:
real_total_true += _true
real_total_pred += _pred
try:
precision, recall, f1, _ = precision_recall_fscore_support(total_true, total_pred, average='macro')
accuracy = accuracy_score(total_true, total_pred)
print(f"validation accuracy : {accuracy: .4f}")
print(f"validation Precision : {precision: .4f}")
print(f"validation Recall : {recall: .4f}")
print(f"validation F1 : {f1: .4f}")
except:
precision, recall, f1, _ = precision_recall_fscore_support(real_total_true, real_total_pred, average='macro')
accuracy = accuracy_score(real_total_true, real_total_pred)
print(f"No. of int type output: {len(real_total_true)}/{len(total_true)}")
print(f"validation accuracy : {accuracy: .4f}")
print(f"validation Precision : {precision: .4f}")
print(f"validation Recall : {recall: .4f}")
print(f"validation F1 : {f1: .4f}")
return f1
def test(test_loader,model,tokenizer):
model.eval()
final_preds = []
idss = []
loop = tqdm(test_loader, leave=True)
for input_ids,attention_mask in loop:
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
argmax = [torch.argmax(logit).cpu().detach().item() for logit in outputs.logits]
print(argmax)
final_preds += argmax
idss += input_ids.cpu()
print(len(idss))
sents = [tokenizer.decode(ids) for ids in idss]
print(len(sents))
print(len(final_preds))
return (sents,final_preds)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
cfg = Config(args.config_file)
for key, value in vars(args).items():
if value != None:
exec("cfg.%s = '%s'" % (key,value))
print(cfg.model, cfg.sent_col, cfg.label_col)
cfg.num_workers = torch.cuda.device_count()
print(cfg.test_res_col)
print(cfg.checkpoint_filename)
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
print('Train:',cfg.train)
print('Evaluate:',cfg.evaluate)
print('Test:',cfg.test)
if 't5' in cfg.model:
model = T5ForConditionalGeneration.from_pretrained(cfg.model,resume_download=True)
else:
model = AutoModelForSequenceClassification.from_pretrained(cfg.model,resume_download=True)
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
if cfg.train:
train_dataset = CSV2Dataset(cfg,cfg.train_data,'train')
valid_dataset = CSV2Dataset(cfg,cfg.val_data,'valid')
train_dataloader = DataLoader(train_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(train_dataset)))
valid_dataloader = DataLoader(valid_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(valid_dataset)))
if cfg.evaluate:
test_dataset = CSV2Dataset(cfg,cfg.test_data,'valid')
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset)))
scheduler = get_linear_schedule_with_warmup(optimizer,num_warmup_steps=0,
num_training_steps=len(train_dataloader)*cfg.epochs)
tokenizer = valid_dataset.get_tokenizer()
elif cfg.test:
test_dataset = CSV2Dataset(cfg,cfg.test_data,'test')
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset),is_test=True))
tokenizer = test_dataset.get_tokenizer()
if cfg.evaluate and not cfg.train:
valid_dataset = CSV2Dataset(cfg,cfg.val_data,'valid')
valid_dataloader = DataLoader(valid_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(valid_dataset)))
tokenizer = valid_dataset.get_tokenizer()
model.resize_token_embeddings(len(tokenizer))
best_prec1 = 0
if cfg.evaluate or cfg.test or cfg.resume:
torch.cuda.empty_cache()
model = model.to(device)
def resume():
if os.path.isfile(cfg.resume_model):
print("=> loading checkpoint '{}'".format(cfg.resume_model))
checkpoint = torch.load(cfg.resume_model)
cfg.start_epoch = checkpoint['epoch']+1
global best_prec1
if 'TL' in cfg.best_filename:
best_prec1=0
cfg.epochs = cfg.start_epoch + cfg.epochs
else:
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(cfg.resume_model, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(cfg.resume_model))
resume()
if cfg.train:
model = nn.DataParallel(model, device_ids = list(range(torch.cuda.device_count()))).to(device)
for epoch in range(cfg.start_epoch, cfg.epochs):
# train for one epoch
train(train_dataloader, model, optimizer, scheduler, epoch, cfg.epochs)
# evaluate on validation set
prec1 = validate(valid_dataloader, model, tokenizer)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
best_model = model
print(f"Best F1 :{best_prec1}")
save_checkpoint({
'epoch': epoch,
'state_dict': best_model.module.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best,filename=cfg.checkpoint_filename,best_filename=cfg.best_filename)
if cfg.evaluate:
if cfg.train:
print(f'***On Test Set-{cfg.label_col}***')
validate(test_dataloader,model,tokenizer)
else:
model = nn.DataParallel(model, device_ids = list(range(torch.cuda.device_count()))).to(device)
validate(valid_dataloader, model, tokenizer)
# exit()
if cfg.test:
if cfg.train:
model = best_model
if cfg.evaluate:
test_dataset = CSV2Dataset(cfg,cfg.test_data,'test')
test_dataloader = DataLoader(test_dataset,batch_sampler=batch_sampling(cfg.batch_size,len(test_dataset),is_test=True))
tokenizer = test_dataset.get_tokenizer()
sents, preds = test(test_dataloader,model,tokenizer)
df = pd.read_csv(cfg.test_data)
if len(df) != len(preds):
preds += [''] * (len(df)-len(preds))
df['decoded_text'] = sents
df[cfg.test_res_col] = preds
df.to_csv(cfg.test_res,encoding='utf-8',index=False)
|