|
|
|
import random |
|
import json |
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import pytorch_lightning as pl |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Config: |
|
|
|
SEED = 94 |
|
if_arabic = False |
|
|
|
|
|
def __init__(self, filename, SEED=None): |
|
if SEED: |
|
self.SEED = SEED |
|
self.set_random_seed() |
|
self.read_json(filename) |
|
|
|
self.model = self.config_df['model'] |
|
self.max_length = self.config_df['max_length'] |
|
self.checkpoint_filename = self.config_df['checkpoint_filename'] |
|
self.best_filename = self.config_df['best_filename'] |
|
self.additional_tokens = self.config_df['additional_tokens'] |
|
self.remove_special_tokens = self.config_df['remove_special_tokens'] |
|
self.get_special_tokens() |
|
|
|
self.train_data = self.config_df['train_data'] |
|
self.val_data = self.config_df['val_data'] |
|
self.test_data = self.config_df['test_data'] |
|
self.test_res = self.config_df['test_res'] |
|
|
|
self.sent_col = self.config_df['sent_col'] |
|
self.label_col = self.config_df['label_col'] |
|
self.num_labels = self.config_df['num_labels'] |
|
|
|
self.test_res_col = self.config_df['test_res_col'] |
|
self.test_col = self.config_df['test_col'] |
|
|
|
self.batch_size = self.config_df['batch_size'] |
|
self.num_workers = self.config_df['num_workers'] |
|
self.distributed=self.config_df['distributed'] |
|
|
|
self.train = self.config_df['train'] |
|
self.evaluate = self.config_df['evaluate'] |
|
self.test = self.config_df['test'] |
|
|
|
self.resume = self.config_df['resume'] |
|
self.resume_model = self.config_df['resume_model'] |
|
|
|
self.start_epoch = 0 |
|
self.epochs = 6 |
|
|
|
|
|
def get_special_tokens(self,filename='{ANY_SPECIAL_TOKENS}.json'): |
|
|
|
with open(filename,'r') as f: |
|
self.additional_tokens += list(json.load(f).values()) |
|
|
|
def read_json(self,filename): |
|
with open(filename,'r') as f: |
|
self.config_df = json.load(f) |
|
|
|
def set_random_seed(self): |
|
print(f'=> SEED : {self.SEED}') |
|
|
|
random.seed(self.SEED) |
|
np.random.seed(self.SEED) |
|
torch.manual_seed(self.SEED) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
torch.cuda.manual_seed_all(self.SEED) |
|
|
|
pl.seed_everything(self.SEED) |
|
|
|
|