Update image_generator.py
Browse files- image_generator.py +12 -5
image_generator.py
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
-
from diffusers import
|
2 |
import torch
|
3 |
|
4 |
loaded_pipe = None
|
5 |
loaded_pipe_id = None
|
6 |
|
7 |
-
def load_model(pipe_id):
|
8 |
global loaded_pipe, loaded_pipe_id
|
9 |
if loaded_pipe_id != pipe_id:
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
loaded_pipe_id = pipe_id
|
12 |
return loaded_pipe
|
13 |
|
@@ -18,9 +25,9 @@ def set_scheduler(pipe, scheduler_type):
|
|
18 |
pipe.scheduler = DPMSolverMultistepScheduler(use_karras_sigmas="yes")
|
19 |
return pipe
|
20 |
|
21 |
-
def generate_image(prompt, num_inference_steps, seed, guidance_scale, negative_prompt=None, pipe_id="
|
22 |
global loaded_pipe
|
23 |
-
pipe = load_model(pipe_id)
|
24 |
pipe = set_scheduler(pipe, scheduler_type)
|
25 |
generator = torch.manual_seed(seed)
|
26 |
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale).images[0]
|
|
|
1 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, LCMScheduler, DPMSolverMultistepScheduler
|
2 |
import torch
|
3 |
|
4 |
loaded_pipe = None
|
5 |
loaded_pipe_id = None
|
6 |
|
7 |
+
def load_model(pipe_id, unet_model_id):
|
8 |
global loaded_pipe, loaded_pipe_id
|
9 |
if loaded_pipe_id != pipe_id:
|
10 |
+
unet = UNet2DConditionModel.from_pretrained(
|
11 |
+
unet_model_id,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
variant="fp16",
|
14 |
+
)
|
15 |
+
loaded_pipe = StableDiffusionXLPipeline.from_pretrained(
|
16 |
+
pipe_id, unet=unet, torch_dtype=torch.float16, variant="fp16",
|
17 |
+
).to("cuda")
|
18 |
loaded_pipe_id = pipe_id
|
19 |
return loaded_pipe
|
20 |
|
|
|
25 |
pipe.scheduler = DPMSolverMultistepScheduler(use_karras_sigmas="yes")
|
26 |
return pipe
|
27 |
|
28 |
+
def generate_image(prompt, num_inference_steps, seed, guidance_scale, negative_prompt=None, pipe_id="stabilityai/stable-diffusion-xl-base-1.0", unet_model_id="latent-consistency/lcm-sdxl", scheduler_type="LCM"):
|
29 |
global loaded_pipe
|
30 |
+
pipe = load_model(pipe_id, unet_model_id)
|
31 |
pipe = set_scheduler(pipe, scheduler_type)
|
32 |
generator = torch.manual_seed(seed)
|
33 |
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale).images[0]
|