# Arithmetic Puzzles Dataset A collection of arithmetic puzzles with heavy use of variable assignment. Current LLMs struggle with variable indirection/multi-hop reasoning, this should be a tough test for them. Inputs are a list of strings representing variable assignments (`c=a+b`), and the output is the integer answer. Outputs are filtered to be between [-100, 100], and self-reference/looped dependencies are forbidden. Splits are named like: - `train_N` 8k total examples of puzzles with N variables - `test_N` 2k more examples with N variables Train/test leakage is prevented: all training examples are filtered out of the test set. Conceptually the data looks like this: ```python Input: a=1 b=2 c=a+b solve(c)= Output: 3 ``` In actuality it looks like this: ```python { "input": ['var_0=1', 'var_1=2', 'var_2=a+b', 'solve(var_2)='], "output": 3 } ``` ### Loading the Dataset ```python from datasets import load_dataset # Load the entire dataset dataset = load_dataset("neurallambda/arithmetic_dataset") # Load specific splits train_small = load_dataset("neurallambda/arithmetic_dataset", split="train_10") test_small = load_dataset("neurallambda/arithmetic_dataset", split="test_10") ``` ### Preparing Inputs To prepare the inputs as concatenated strings, you can do this: ```python def prepare_input(example): return { "input_text": " ".join(example["input"]), "output": example["output"] } # Apply the preparation to a specific split train_small_prepared = train_small.map(prepare_input) # Example of using the prepared dataset for example in train_small_prepared.select(range(5)): # Show first 5 examples print("Input:", example["input_text"]) print("Output:", example["output"]) print() ``` This will produce output similar to: ``` Input: var_0=5 var_1=2 var_2=-2 + -8 var_3=3 var_4=4 var_5=var_2 var_6=var_3 * 10 var_7=var_2 - var_0 var_8=var_1 var_9=-2 - 9 solve(var_3)= Output: 3 ```