Create hal-summarization.py
Browse files- hal-summarization.py +134 -0
hal-summarization.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import datasets
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
_ARTICLE_ID = "article_id"
|
8 |
+
_ARTICLE_WORDS = "article_words"
|
9 |
+
_ARTICLE_BBOXES = "article_bboxes"
|
10 |
+
_ARTICLE_NORM_BBOXES = "article_norm_bboxes"
|
11 |
+
_ABSTRACT = "abstract"
|
12 |
+
_ARTICLE_PDF_URL = "article_pdf_url"
|
13 |
+
|
14 |
+
def normalize_bbox(bbox, size):
|
15 |
+
return [
|
16 |
+
int(1000 * bbox[0] / size[0]),
|
17 |
+
int(1000 * bbox[1] / size[1]),
|
18 |
+
int(1000 * bbox[2] / size[0]),
|
19 |
+
int(1000 * bbox[3] / size[1]),
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
class HALSummarizationConfig(datasets.BuilderConfig):
|
24 |
+
"""BuilderConfig for HALSummarization."""
|
25 |
+
def __init__(self, **kwargs):
|
26 |
+
"""BuilderConfig for ArxivSummarization.
|
27 |
+
Args:
|
28 |
+
**kwargs: keyword arguments forwarded to super.
|
29 |
+
"""
|
30 |
+
super(HALSummarizationConfig, self).__init__(**kwargs)
|
31 |
+
|
32 |
+
|
33 |
+
class HALSummarizationDataset(datasets.GeneratorBasedBuilder):
|
34 |
+
"""HALSummarization Dataset."""
|
35 |
+
|
36 |
+
_TRAIN_ARCHIVE = "train.zip"
|
37 |
+
_VAL_ARCHIVE = "val.zip"
|
38 |
+
_TEST_ARCHIVE = "test.zip"
|
39 |
+
_TRAIN_ABSTRACTS = "train.txt"
|
40 |
+
_VAL_ABSTRACTS = "validation.txt"
|
41 |
+
_TEST_ABSTRACTS = "test.txt"
|
42 |
+
|
43 |
+
BUILDER_CONFIGS = [
|
44 |
+
HALSummarizationConfig(
|
45 |
+
name="hal",
|
46 |
+
version=datasets.Version("1.0.0"),
|
47 |
+
description="HAL dataset for summarization",
|
48 |
+
),
|
49 |
+
]
|
50 |
+
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
# Should return a datasets.DatasetInfo object
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
features=datasets.Features(
|
56 |
+
{
|
57 |
+
_ARTICLE_ID: datasets.Value("string"),
|
58 |
+
_ARTICLE_WORDS: datasets.Sequence(datasets.Value("string")),
|
59 |
+
_ARTICLE_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
60 |
+
_ARTICLE_NORM_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
61 |
+
_ABSTRACT: datasets.Value("string"),
|
62 |
+
_ARTICLE_PDF_URL: datasets.Value("string"),
|
63 |
+
}
|
64 |
+
),
|
65 |
+
supervised_keys=None,
|
66 |
+
)
|
67 |
+
|
68 |
+
def _split_generators(self, dl_manager):
|
69 |
+
|
70 |
+
train_dir = os.path.join(dl_manager.download_and_extract(self._TRAIN_ARCHIVE), "train")
|
71 |
+
val_dir = os.path.join(dl_manager.download_and_extract(self._VAL_ARCHIVE), "val")
|
72 |
+
test_dir = os.path.join(dl_manager.download_and_extract(self._TEST_ARCHIVE), "test")
|
73 |
+
|
74 |
+
train_abstracts = dl_manager.download_and_extract(self._TRAIN_ABSTRACTS)
|
75 |
+
val_abstracts = dl_manager.download_and_extract(self._VAL_ABSTRACTS)
|
76 |
+
test_abstracts = dl_manager.download_and_extract(self._TEST_ABSTRACTS)
|
77 |
+
|
78 |
+
return [
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.TRAIN,
|
81 |
+
gen_kwargs={"data_path": train_dir, "abstract_path": train_abstracts}
|
82 |
+
),
|
83 |
+
datasets.SplitGenerator(
|
84 |
+
name=datasets.Split.VALIDATION,
|
85 |
+
gen_kwargs={"data_path": val_dir, "abstract_path": val_abstracts}
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.TEST,
|
89 |
+
gen_kwargs={"data_path": test_dir, "abstract_path": test_abstracts}
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
def _generate_examples(self, data_path, abstract_path):
|
94 |
+
"""Generate HALSummarization examples."""
|
95 |
+
filenames = sorted(os.listdir(data_path))
|
96 |
+
|
97 |
+
guid = 0
|
98 |
+
with open(abstract_path, 'r') as abstract_file:
|
99 |
+
for line in tqdm(abstract_file, total=len(filenames), desc=f"Reading files in {data_path}"):
|
100 |
+
guid += 1
|
101 |
+
item = json.loads(line)
|
102 |
+
fname = item["id"] + ".txt"
|
103 |
+
filepath = os.path.join(data_path, fname)
|
104 |
+
|
105 |
+
words = []
|
106 |
+
bboxes = []
|
107 |
+
norm_bboxes = []
|
108 |
+
|
109 |
+
with open(filepath, encoding="utf-8") as f:
|
110 |
+
for line in f:
|
111 |
+
splits = line.split("\t")
|
112 |
+
word = splits[0]
|
113 |
+
bbox = splits[1:5]
|
114 |
+
bbox = [int(b) for b in bbox]
|
115 |
+
page_width, page_height = int(splits[5]), int(splits[6])
|
116 |
+
norm_bbox = normalize_bbox(bbox, (page_width, page_height))
|
117 |
+
|
118 |
+
words.append(word)
|
119 |
+
bboxes.append(bbox)
|
120 |
+
norm_bboxes.append(norm_bbox)
|
121 |
+
|
122 |
+
assert len(words) == len(bboxes)
|
123 |
+
assert len(bboxes) == len(norm_bboxes)
|
124 |
+
|
125 |
+
yield guid, {
|
126 |
+
_ARTICLE_ID: item["id"],
|
127 |
+
_ARTICLE_WORDS: words,
|
128 |
+
_ARTICLE_BBOXES: bboxes,
|
129 |
+
_ARTICLE_NORM_BBOXES: norm_bboxes,
|
130 |
+
_ABSTRACT: item["abstract"],
|
131 |
+
_ARTICLE_PDF_URL: item["pdf_url"],
|
132 |
+
}
|
133 |
+
|
134 |
+
|