import json import os import datasets from tqdm import tqdm _ARTICLE_ID = "article_id" _ARTICLE_WORDS = "article_words" _ARTICLE_BBOXES = "article_bboxes" _ARTICLE_NORM_BBOXES = "article_norm_bboxes" _ABSTRACT = "abstract" _ARTICLE_PDF_URL = "article_pdf_url" def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] class HALSummarizationConfig(datasets.BuilderConfig): """BuilderConfig for HALSummarization.""" def __init__(self, **kwargs): """BuilderConfig for ArxivSummarization. Args: **kwargs: keyword arguments forwarded to super. """ super(HALSummarizationConfig, self).__init__(**kwargs) class HALSummarizationDataset(datasets.GeneratorBasedBuilder): """HALSummarization Dataset.""" _TRAIN_ARCHIVE = "train.tar.gz" _VAL_ARCHIVE = "val.tar.gz" _TEST_ARCHIVE = "test.tar.gz" _TRAIN_ABSTRACTS = "train.txt" _VAL_ABSTRACTS = "validation.txt" _TEST_ABSTRACTS = "test.txt" BUILDER_CONFIGS = [ HALSummarizationConfig( name="hal", version=datasets.Version("1.0.0"), description="HAL dataset for summarization", ), ] def _info(self): # Should return a datasets.DatasetInfo object return datasets.DatasetInfo( features=datasets.Features( { _ARTICLE_ID: datasets.Value("string"), _ARTICLE_WORDS: datasets.Sequence(datasets.Value("string")), _ARTICLE_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), _ARTICLE_NORM_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), _ABSTRACT: datasets.Value("string"), _ARTICLE_PDF_URL: datasets.Value("string"), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): train_dir = os.path.join(dl_manager.download_and_extract(self._TRAIN_ARCHIVE), "train") val_dir = os.path.join(dl_manager.download_and_extract(self._VAL_ARCHIVE), "val") test_dir = os.path.join(dl_manager.download_and_extract(self._TEST_ARCHIVE), "test") train_abstracts = dl_manager.download_and_extract(self._TRAIN_ABSTRACTS) val_abstracts = dl_manager.download_and_extract(self._VAL_ABSTRACTS) test_abstracts = dl_manager.download_and_extract(self._TEST_ABSTRACTS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_path": train_dir, "abstract_path": train_abstracts} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_path": val_dir, "abstract_path": val_abstracts} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_path": test_dir, "abstract_path": test_abstracts} ), ] def _generate_examples(self, data_path, abstract_path): """Generate HALSummarization examples.""" filenames = sorted(os.listdir(data_path)) guid = 0 with open(abstract_path, 'r') as abstract_file: for line in tqdm(abstract_file, total=len(filenames), desc=f"Reading files in {data_path}"): guid += 1 item = json.loads(line) fname = item["id"] + ".txt" filepath = os.path.join(data_path, fname) words = [] bboxes = [] norm_bboxes = [] with open(filepath, encoding="utf-8") as f: for line in f: splits = line.split("\t") word = splits[0] bbox = splits[1:5] bbox = [int(b) for b in bbox] page_width, page_height = int(splits[5]), int(splits[6]) norm_bbox = normalize_bbox(bbox, (page_width, page_height)) words.append(word) bboxes.append(bbox) norm_bboxes.append(norm_bbox) assert len(words) == len(bboxes) assert len(bboxes) == len(norm_bboxes) yield guid, { _ARTICLE_ID: item["id"], _ARTICLE_WORDS: words, _ARTICLE_BBOXES: bboxes, _ARTICLE_NORM_BBOXES: norm_bboxes, _ABSTRACT: item["abstract"], _ARTICLE_PDF_URL: item["pdf_url"], }