File size: 5,408 Bytes
1318418 34e8621 1318418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import json
import os
import datasets
from tqdm import tqdm
_ARTICLE_ID = "article_id"
_ARTICLE_WORDS = "article_words"
_ARTICLE_BBOXES = "article_bboxes"
_ARTICLE_NORM_BBOXES = "article_norm_bboxes"
_ABSTRACT = "abstract"
_ARTICLE_PDF_URL = "article_pdf_url"
def normalize_bbox(bbox, size):
return [
int(1000 * bbox[0] / size[0]),
int(1000 * bbox[1] / size[1]),
int(1000 * bbox[2] / size[0]),
int(1000 * bbox[3] / size[1]),
]
class SciELOSummarizationConfig(datasets.BuilderConfig):
"""BuilderConfig for SciELOSummarization."""
def __init__(self, lang, **kwargs):
"""BuilderConfig for ArxivSummarization.
Args:
lang: language (`es` for Spanish, `pt` for Portuguese)
**kwargs: keyword arguments forwarded to super.
"""
super(SciELOSummarizationConfig, self).__init__(**kwargs)
self.lang = lang
class SciELOSummarizationDataset(datasets.GeneratorBasedBuilder):
"""SciELOSummarization Dataset."""
BUILDER_CONFIGS = [
SciELOSummarizationConfig(
name="scielo_es",
version=datasets.Version("1.0.0"),
description="SciELO dataset for summarization (Spanish)",
lang="es",
),
SciELOSummarizationConfig(
name="scielo_pt",
version=datasets.Version("1.0.0"),
description="SciELO dataset for summarization (Portuguese)",
lang="pt",
),
]
def _info(self):
# Should return a datasets.DatasetInfo object
return datasets.DatasetInfo(
features=datasets.Features(
{
_ARTICLE_ID: datasets.Value("string"),
_ARTICLE_WORDS: datasets.Sequence(datasets.Value("string")),
_ARTICLE_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
_ARTICLE_NORM_BBOXES: datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
_ABSTRACT: datasets.Value("string"),
_ARTICLE_PDF_URL: datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
train_archive = self.config.lang + "_train.zip"
val_archive = self.config.lang + "_val.zip"
test_archive = self.config.lang + "_test.zip"
train_abstracts = self.config.lang + "_train.txt"
val_abstracts = self.config.lang + "_validation.txt"
test_abstracts = self.config.lang + "_test.txt"
train_dir = os.path.join(dl_manager.download_and_extract(train_archive), self.config.lang + "_train")
val_dir = os.path.join(dl_manager.download_and_extract(val_archive), self.config.lang + "_val")
test_dir = os.path.join(dl_manager.download_and_extract(test_archive), self.config.lang + "_test")
train_abstracts = dl_manager.download_and_extract(train_abstracts)
val_abstracts = dl_manager.download_and_extract(val_abstracts)
test_abstracts = dl_manager.download_and_extract(test_abstracts)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_path": train_dir, "abstract_path": train_abstracts}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_path": val_dir, "abstract_path": val_abstracts}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_path": test_dir, "abstract_path": test_abstracts}
),
]
def _generate_examples(self, data_path, abstract_path):
"""Generate SciELOSummarization examples."""
filenames = sorted(os.listdir(data_path))
guid = 0
with open(abstract_path, 'r') as abstract_file:
for line in tqdm(abstract_file, total=len(filenames), desc=f"Reading files in {data_path}"):
guid += 1
item = json.loads(line)
fname = item["id"] + ".txt"
filepath = os.path.join(data_path, fname)
words = []
bboxes = []
norm_bboxes = []
with open(filepath, encoding="utf-8") as f:
for line in f:
splits = line.split("\t")
word = splits[0]
bbox = splits[1:5]
bbox = [int(b) for b in bbox]
page_width, page_height = int(splits[5]), int(splits[6])
norm_bbox = normalize_bbox(bbox, (page_width, page_height))
words.append(word)
bboxes.append(bbox)
norm_bboxes.append(norm_bbox)
assert len(words) == len(bboxes)
assert len(bboxes) == len(norm_bboxes)
yield guid, {
_ARTICLE_ID: item["id"],
_ARTICLE_WORDS: words,
_ARTICLE_BBOXES: bboxes,
_ARTICLE_NORM_BBOXES: norm_bboxes,
_ABSTRACT: item["abstract"],
_ARTICLE_PDF_URL: item["pdf_url"],
}
|