File size: 6,484 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import math
from numpy import transpose
import torch 
import torch.nn.functional as F 
from torch import nn
from torch.nn.modules.normalization import LayerNorm
from torch.nn import Transformer
import copy


class MultiheadAttentionwithRelativePositionalEmbedding(nn.Module):
    def __init__(self, dmodel, num_heads, dropout=0, Er_provided=False, max_len=3):
        super(MultiheadAttentionwithRelativePositionalEmbedding, self).__init__()
        self.L = 2 * max_len - 1
        self.num_heads = num_heads
        self.max_len = max_len
        self.head_dim = dmodel // num_heads
        assert self.head_dim * num_heads == dmodel, "embed_dim must be divisible by num_heads"

        self.key = nn.Linear(dmodel, dmodel)
        self.value = nn.Linear(dmodel, dmodel)
        self.query = nn.Linear(dmodel, dmodel)
        self.dropout = nn.Dropout(dropout)
        self.Er_provided = Er_provided
        self.num_heads = num_heads
        
        if not Er_provided:
            self.Er = nn.Parameter(torch.randn(num_heads, self.L, self.head_dim))

    def forward(self, query, key, value, Er=None, layer=0, attn_mask=None):
        #x: (batch, len, dmodel)
        #Srel: (num_head, tgt_len, src_len)
        #attn_mask:  (batch, num_head, tgt_len, src_len): float tensor
        bs, tgt_len, d_model = query.shape
        _, src_len, _ = key.shape

        q = self.query(query).reshape(bs, tgt_len, self.num_heads, self.head_dim).transpose(1, 2)  #(batch, num_head, tgt_len, head_dim)
        k = self.key(key).reshape(bs, src_len, self.num_heads, self.head_dim).permute(0, 2, 3, 1)  #(batch, num_head, head_dim, src_len)
        v = self.value(value).reshape(bs, src_len, self.num_heads, self.head_dim).transpose(1, 2)  #(batch, num_head, src_len, head_dim)

        Er_t = torch.zeros(self.num_heads, 2*src_len-1, self.head_dim, device=query.device)
        dilation_len = min(1 + (src_len-1)//(2**layer), self.max_len)
        if not self.Er_provided:
            Er_t[:, [src_len-1 + i*(2**layer) for i in range(-dilation_len+1, dilation_len)], :] = self.Er[:, self.max_len-dilation_len: self.max_len+dilation_len-1, :]
        else:
            Er_t[:, [src_len-1 + i*(2**layer) for i in range(-dilation_len+1, dilation_len)], :] = Er[:, self.max_len-dilation_len: self.max_len+dilation_len-1, :]
        Er_t = Er_t.transpose(-2, -1)   #(num_head, head_dim, src_L)

        QEr = torch.matmul(q, Er_t) #(num_head, num_head, tgt_len, src_L)
        #print(QEr[0, 0])
        Srel = self.skew(QEr, src_len) #(num_head, num_head, tgt_len, src_len)
        #print('Srel', Srel[1, 1])

        attn = (torch.matmul(q, k) + Srel) / math.sqrt(self.head_dim) #(batch, num_head, tgt_len, src_len)
        
        if attn_mask is not None:
            #print(attn.shape, attn_mask.shape)
            attn += attn_mask
            #for i in range(attn.shape[0]):
            #    print(attn_mask[i, 0])
        attn = F.softmax(attn, dim=-1)

        out = torch.matmul(attn, v) #(batch, num_head, tgt_len, head_dim)
        out = out.transpose(1, 2).reshape(bs, tgt_len, d_model) #(batch, tgt_len, d_model)

        return self.dropout(out), attn
        
    def skew(self, QEr, src_len):
        #QEr: (batch, num_heads, tgt_len, src_L)
        bs, num_heads, tgt_len, src_L = QEr.shape
        QEr = F.pad(QEr, (0, 1))    #(batch, num_heads, tgt_len, src_L+1)
        QEr = QEr.reshape(bs, num_heads, -1)   #(batch, num_heads, tgt_len*(src_L+1))
        QEr = F.pad(QEr, (0, src_L-tgt_len))    #(batch, num_heads, (tgt_len+1)*src_L)
        QEr = QEr.reshape(bs, num_heads, tgt_len+1, src_L)
        QEr = QEr[:, :, :tgt_len, -src_len:]    #(batch, num_heads, tgt_len, src_len)
        return QEr


class TransformerEncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, Er_provided=False, max_len=3, layer_norm_eps=1e-5, norm_first=False):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttentionwithRelativePositionalEmbedding(d_model, nhead, dropout, Er_provided, max_len)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm_first = norm_first
        self.norm1 = LayerNorm(d_model, eps=layer_norm_eps)
        self.norm2 = LayerNorm(d_model, eps=layer_norm_eps)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = F.gelu

    def forward(self, x, Er=None, layer=0, src_mask=None):
        #x: (batch, len, dmodel)
        #Er: (num_head, tgt_len, src_len)
        #key_padding_mask: (batch, num_head, tgt_len, src_len), bool tensor
        #attn_mask:  (batch, num_head, tgt_len, src_len): float tensor
        if self.norm_first:
            x = x + self._sa_block(self.norm1(x), Er, layer, src_mask)
            x = x + self._ff_block(self.norm2(x))
        else:
            x = self.norm1(x + self._sa_block(x, Er, layer, src_mask))
            x = self.norm2(x + self._ff_block(x))
        return x

    # self-attention block
    def _sa_block(self, x, Er=None, layer=0, attn_mask=None):
        x = self.self_attn(x, x, x, Er, layer, attn_mask=attn_mask)[0]
        return self.dropout1(x)

    # feed forward block
    def _ff_block(self, x):
        x = self.linear2(self.dropout(self.activation(self.linear1(x))))
        return self.dropout2(x)



def generate_dilation_self_attention_mask(batch, num_head, seq_len, max_len, layer):
        attn_mask = torch.eye(seq_len).repeat(batch, num_head, 1, 1)
        mask_temp = torch.eye(seq_len).repeat(batch, num_head, 1, 1)
        for i in range(1, max_len):
            attn_mask[:, :, : -i*(2**layer), i*(2**layer):] += mask_temp[:, :, i*(2**layer):, i*(2**layer):]
            attn_mask[:, :, i*(2**layer):, : -i*(2**layer)] += mask_temp[:, :, i*(2**layer):, i*(2**layer):]
        attn_mask = (1-attn_mask).masked_fill((attn_mask == 0), -float('inf'))
        return attn_mask




if __name__ == '__main__':
    MAX_LEN=3
    LAYER=0

    model = MultiheadAttentionwithRelativePositionalEmbedding(dmodel=12, num_heads=6, max_len=MAX_LEN)

    x = torch.ones(3, 8, 12)

    attn_mask = generate_dilation_self_attention_mask(3, 6, 8, MAX_LEN, LAYER)
    #print(attn_mask[1, 1, :, :].numpy())

    output, attn = model(x, x, x, attn_mask=attn_mask, layer=LAYER)
    #print(attn[1, 1])