File size: 21,616 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import os
import time
import madmom
import torch
import librosa
import numpy as np
from torch.utils.data import Dataset
from scipy.ndimage import maximum_filter1d
from tqdm import tqdm
from matplotlib import pyplot as plt
import librosa.display
from scipy.interpolate import interp1d
from scipy.signal import argrelmax



class dataset_processing(Dataset):
    def __init__(self, full_data, 
                    full_annotation, 
                    audio_files,
                    mode='train', 
                    fold=0, 
                    fps=44100/1024,
                    sample_size = 512,
                    num_folds=8,
                    mask_value=-1,
                    test_only = []  
                    ):
        self.fold = fold
        self.num_folds = num_folds
        self.fps = fps
        self.mode = mode
        self.sample_size = sample_size
        self.MASK_VALUE = mask_value

        self.data = []
        self.beats = []
        self.downbeats = []
        self.tempi = []
        self.root = []

        if self.mode == 'train':
            self.dataset_name = []
            self.train_clip(full_data, full_annotation, test_only=test_only)
        
        elif self.mode == 'validation' or self.mode == 'test':
            self.dataset_name = []
            self.audio_files = []
            self.val_and_test_clip(full_data, full_annotation, audio_files, test_only=test_only)

        full_data = None
        full_annotation = None
            
    def train_clip(self, full_data, full_annotation, num_tempo_bins=300, test_only=[]):
        for fold_idx in tqdm(range(self.num_folds)):
            if (fold_idx != self.fold) and (fold_idx != (self.fold+1)%self.num_folds):
                for key in full_data:
                    if key == test_only:
                        continue
                    #print(f'processing {key} under fold {fold_idx}')
                    for song_idx in range(len(full_data[key][fold_idx])):
                        song = full_data[key][fold_idx][song_idx]   #(t, 5, mel)
                        annotation = full_annotation[key][fold_idx][song_idx]
                        try:
                            #print(annotation, annotation.shape)
                            if len(annotation.shape) == 2:
                                beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
                            else:
                                beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
                            beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
                            beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
                        except:
                            beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
                            print(f'beat load error at {key} dataset, skip it')
                        
                        try:
                            downbeat = annotation[annotation[:, 1] == 1][:, 0]
                            downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
                            downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
                            downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
                        except:
                            downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
                            if not ((key == 'smc') or (key == 'musicnet')):
                                print(f'downbeat load error at {key} dataset, skip it')

                        try:
                            #tempo = self.infer_tempo(annotation[:, 0])
                            #tempo = np.array([int(np.round(tempo))])
                            tempo = np.zeros(num_tempo_bins, dtype='float32')
                            if len(annotation.shape) == 2:
                                tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
                            else:
                                tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
                            tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
                            tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
                            tempo = tempo/sum(tempo)
                            #tempo += np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.25)
                        except:
                            #tempo = np.array([self.MASK_VALUE]) 
                            tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
          
                        if self.sample_size is None:
                                self.dataset_name.append(key)
                                self.data.append(song)
                                self.beats.append(beat)
                                self.downbeats.append(downbeat)
                                self.tempi.append(tempo)
                        else:
                            if len(song) <= self.sample_size:
                                self.dataset_name.append(key)
                                self.data.append(song)
                                self.beats.append(beat)
                                self.downbeats.append(downbeat)
                                self.tempi.append(tempo)
                            else:
                                for i in range(0, len(song)-self.sample_size+1, self.sample_size):
                                    self.dataset_name.append(key)
                                    self.data.append(song[i: i+self.sample_size])
                                    self.beats.append(beat[i: i+self.sample_size])
                                    self.downbeats.append(downbeat[i: i+self.sample_size])
                                    self.tempi.append(tempo)
                                if i + self.sample_size < len(song):
                                    self.dataset_name.append(key)
                                    self.data.append(song[len(song)-self.sample_size:])
                                    self.beats.append(beat[len(song)-self.sample_size:])
                                    self.downbeats.append(downbeat[len(song)-self.sample_size:])
                                    self.tempi.append(tempo)


        #print(len(self.data), len(self.beats), len(self.downbeats))

    def val_and_test_clip(self, full_data, full_annotation, audio_files, num_tempo_bins=300, test_only=[]):
        if self.mode == 'validation':
            fold_idx = (self.fold+1)%self.num_folds
        elif self.mode == 'test':
            fold_idx = self.fold
        for key in tqdm(full_data, total=len(full_data)):
            #print(f'processing {key}')
            if ((self.mode == 'validation') and (key in test_only)):
                continue
            for song_idx in range(len(full_data[key][fold_idx])):
                song = full_data[key][fold_idx][song_idx]
                annotation = full_annotation[key][fold_idx][song_idx]
                audio_file = audio_files[key][fold_idx][song_idx]
                try:
                    if len(annotation.shape) == 2:
                        beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
                    else: 
                        beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
                    beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
                    beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
                except:
                    beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
                    print(f'beat load error at {key} dataset, skip it')

                try:
                    downbeat = annotation[annotation[:, 1] == 1][:, 0]
                    downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
                    downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
                    downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
                except:
                    downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
                    if not ((key == 'smc') or (key == 'musicnet')):
                        print(f'downbeat load error at {key} dataset, skip it')

                try:
                    #tempo = self.infer_tempo(annotation[:, 0])
                    #tempo = np.array([int(np.round(tempo))])
                    tempo = np.zeros(num_tempo_bins, dtype='float32')
                    if len(annotation.shape) == 2:
                        tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
                    else:
                        tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
                    tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
                    tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
                    tempo = tempo/sum(tempo)
                except:
                    #tempo = np.array([self.MASK_VALUE]) 
                    tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
                
                if self.sample_size is None:
                        self.dataset_name.append(key)
                        self.root.append(audio_file)
                        self.data.append(song)
                        self.beats.append(beat)
                        self.downbeats.append(downbeat)
                        self.tempi.append(tempo)
                else:
                    eval_sample_size = int(44100/1024 * 420)
                    if len(song) <= eval_sample_size:
                        self.dataset_name.append(key)
                        self.root.append(audio_file)
                        self.data.append(song)
                        self.beats.append(beat)
                        self.downbeats.append(downbeat)
                        self.tempi.append(tempo)
                    else:
                        for i in range(0, len(song)-eval_sample_size+1, eval_sample_size):
                            self.dataset_name.append(key)
                            self.root.append(audio_file)
                            self.data.append(song[i: i+eval_sample_size])
                            self.beats.append(beat[i: i+eval_sample_size])
                            self.downbeats.append(downbeat[i: i+eval_sample_size])
                            self.tempi.append(tempo)
                        if i + eval_sample_size < len(song):
                            self.dataset_name.append(key)
                            self.root.append(audio_file)
                            self.data.append(song[len(song)-eval_sample_size:])
                            self.beats.append(beat[len(song)-eval_sample_size:])
                            self.downbeats.append(downbeat[len(song)-eval_sample_size:])
                            self.tempi.append(tempo)

    def infer_tempo(self, beats, hist_smooth=4, no_tempo=-1):
        ibis = np.diff(beats) * self.fps
        bins = np.bincount(np.round(ibis).astype(int))
        # if no beats are present, there is no tempo
        if not bins.any():
            return no_tempo
        # smooth histogram bins
        if hist_smooth > 0:
            bins = madmom.audio.signal.smooth(bins, hist_smooth)
        #print(bins)
        intervals = np.arange(len(bins))       
        # create interpolation function
        interpolation_fn = interp1d(intervals, bins, 'quadratic')
        # generate new intervals with 1000x the resolution
        intervals = np.arange(intervals[0], intervals[-1], 0.001)
        tempi = 60.0 * self.fps / intervals
        # apply quadratic interpolation
        bins = interpolation_fn(intervals)
        peaks = argrelmax(bins, mode='wrap')[0]
        if len(peaks) == 0:
            # no peaks, no tempo
            return no_tempo
        else:
            # report only the strongest tempo
            sorted_peaks = peaks[np.argsort(bins[peaks])[::-1]]
            return tempi[sorted_peaks][0]
                
    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        """x = np.sum(self.data[index], axis=1).transpose(1, 0) #(dmodel, T)
        x = librosa.power_to_db(x, ref=np.max)
        x = x.T[np.newaxis, :, :]
        x = np.repeat(x, 5, axis=0)
        return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index]"""
        
        x = np.transpose(self.data[index],( 1, 2, 0))   #5, dmodel, T
        #x = x + .25 * np.sum(x, axis=0, keepdims=True)
        #x = [librosa.power_to_db(x[i], ref=np.max) for i in range(x.shape[0])]

        np.random.seed()
        if self.mode == 'train':
            p = np.random.rand()
            if p < .5:  #50% time use 5 subspectrograms
                pass
            else:
                idx_sum = np.random.choice(len(x), size=2, replace=False)
                x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
                q = np.random.rand()
                if q < .6:  #30% time use 4 subspectrograms
                    pass
                else:
                    idx_sum = np.random.choice(len(x), size=2, replace=False)
                    x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
                    r = np.random.rand()
                    if r < .5:  #10% time use 3 subspectrograms
                        pass
                    else:  #10% time use 2 subspectrograms
                        idx_sum = np.random.choice(len(x), size=2, replace=False)
                        x = [x[i] for i in range(len(x)) if i not in idx_sum] + [x[idx_sum[0]] + x[idx_sum[1]]]
            
        x = [librosa.power_to_db(x[i], ref=np.max) for i in range(len(x))]
        x = np.transpose(np.array(x), (0, 2, 1))    #T, instr, dmodel

        if self.mode == 'test':
            return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index], self.root[index]
        else:
            return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index]
        




class audioDataset(object):
    def __init__(self, data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix'],
                        test_only_data = ['hainsworth'],
                        data_path="/data1/zhaojw/dataset/linear_spectrogram_data.npz", 
                        annotation_path="/data1/zhaojw/dataset/beat_annotation.npz",
                        fps=44100/1024,
                        SEED = 0,
                        num_folds=8,
                        mask_value = -1,
                        sample_size = 512
                ):

        self.fps = fps
        self.sample_size = sample_size
        self.mask_value = mask_value
        self.num_folds = num_folds
        self.test_only_data = test_only_data

        # load_linear_spectr = np.load(data_path, allow_pickle=True)
        load_annotation = np.load(annotation_path, allow_pickle=True)

        self.full_data = {}
        self.full_annotation = {}
        self.audio_files = {}
        for key in load_annotation:
            if key in data_to_load:
                time1 = time.time()
                print(f'loading {key} dataset ...')
                # data = load_linear_spectr[key]
                annotation = load_annotation[key]
                # assert(len(data) == len(annotation))

                with open(f'./data/audio_lists/{key}.txt', 'r') as f:
                    audio_root = f.readlines()
                audio_root = [item.replace('\n', '') for item in audio_root]
                assert(len(annotation) == len(audio_root))
                print(f'finish loading {key} with shape {annotation.shape}, using {time.time()-time1}s.')
                #fold split
                self.full_data[key] = {}
                self.full_annotation[key] = {}
                self.audio_files[key] = {}
                if key in self.test_only_data:
                    FOLD_SIZE = len(annotation) // num_folds
                    np.random.seed(SEED)
                    np.random.shuffle(data)
                    np.random.seed(SEED)
                    np.random.shuffle(annotation)
                    np.random.seed(SEED)
                    np.random.shuffle(audio_root)
                    for i in range(num_folds):
                        self.full_data[key][i] = audio_root[:]
                        self.full_annotation[key][i] = annotation[:]
                        self.audio_files[key][i] = audio_root[:]
                else:
                    FOLD_SIZE = len(annotation) // num_folds
                    np.random.seed(SEED)
                    np.random.shuffle(data)
                    np.random.seed(SEED)
                    np.random.shuffle(annotation)
                    np.random.seed(SEED)
                    np.random.shuffle(audio_root)
                    for i in range(num_folds-1):
                        self.full_data[key][i] = data[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
                        self.full_annotation[key][i] = annotation[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
                        self.audio_files[key][i] = audio_root[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
                    self.full_data[key][num_folds-1] = data[(num_folds-1)*FOLD_SIZE: len(data)]
                    self.full_annotation[key][num_folds-1] = annotation[(num_folds-1)*FOLD_SIZE: len(annotation)]
                    self.audio_files[key][num_folds-1] = audio_root[(num_folds-1)*FOLD_SIZE: len(audio_root)]
                data = None
                annotation = None

    def get_fold(self, fold=0):
        print('processing train_set')
        train_set = dataset_processing(full_data=self.full_data, 
                                        full_annotation=self.full_annotation, 
                                        audio_files=None,
                                        mode='train', 
                                        fps=self.fps,
                                        fold=fold, 
                                        sample_size = self.sample_size,
                                        num_folds=self.num_folds,
                                        mask_value=self.mask_value,
                                        test_only=self.test_only_data
                                        )

        print('processing val_set')
        val_set = dataset_processing(full_data=self.full_data, 
                                        full_annotation=self.full_annotation, 
                                        audio_files=self.audio_files,
                                        mode='validation', 
                                        fps=self.fps,
                                        fold=fold, 
                                        sample_size=self.sample_size,
                                        num_folds=self.num_folds,
                                        mask_value=self.mask_value,
                                        test_only=self.test_only_data
                                        )

        print('processing test_set')
        test_set = dataset_processing(full_data=self.full_data, 
                                        full_annotation=self.full_annotation, 
                                        audio_files=self.audio_files,
                                        mode='test', 
                                        fps=self.fps,
                                        fold=fold, 
                                        sample_size=self.sample_size,
                                        num_folds=self.num_folds,
                                        mask_value=self.mask_value,
                                        test_only=self.test_only_data
                                        )
        return train_set, val_set, test_set


    
if __name__ == '__main__':
    from torch.utils.data import DataLoader
    #data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix']
    dataset = audioDataset(data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc'],
                        test_only_data = ['gtzan'],
                        # data_path = "./data/demix_spectrogram_data.npz", 
                        annotation_path = "/work/fast_data_yinghao/Beat-Transformer/data/full_beat_annotation.npz",
                        fps = 44100/1024,
                        sample_size = None,
                        num_folds = 8)
    # Fold Splitting
    train_set, val_set, test_set = dataset.get_fold(fold=0)
    #train_loader = DataLoader(train_set, batch_size=1, shuffle=True)
    #val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
    test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
    #for i, (key, data, beat, downbeat, tempo) in enumerate(val_data):
    for i, (key, data, beat, downbeat, tempo, root) in enumerate(test_loader):
        print('key:', key)
        print('data:', data.shape)
        print('beat:', beat.shape)
        #print('beat:', torch.nonzero(beat))
        print('downbeat:', downbeat.shape)
        print('tempo:', tempo.shape)
        print('audio_root:', root)
        #print('downbeat:', torch.nonzero(downbeat))
        break