File size: 6,553 Bytes
bb01eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/bin/bash
# Copyright (c) 2017  Johns Hopkins University (Author: Yenda Trmal, Shinji Watanabe)
# Apache 2.0

export LC_ALL=C

# Begin configuration section.
words_file=
train_text=
dev_text=
oov_symbol="<UNK>"
# End configuration section

echo "$0 $@"

[ -f path.sh ]  && . ./path.sh
. ./utils/parse_options.sh || exit 1

echo "-------------------------------------"
echo "Building an SRILM language model     "
echo "-------------------------------------"

if [ $# -ne 2 ] ; then
  echo "Incorrect number of parameters. "
  echo "Script has to be called like this:"
  echo "  $0 [switches] <datadir> <tgtdir>"
  echo "For example: "
  echo "  $0 data data/srilm"
  echo "The allowed switches are: "
  echo "    words_file=<word_file|>        word list file -- data/lang/words.txt by default"
  echo "    train_text=<train_text|>       data/train/text is used in case when not specified"
  echo "    dev_text=<dev_text|>           last 10 % of the train text is used by default"
  echo "    oov_symbol=<unk_sumbol|<UNK>>  symbol to use for oov modeling -- <UNK> by default"
  exit 1
fi

datadir=$1
tgtdir=$2

##End of configuration
loc=`which ngram-count`;
if [ -z $loc ]; then
  echo >&2 "You appear to not have SRILM tools installed, either on your path,"
  echo >&2 "Use the script \$KALDI_ROOT/tools/install_srilm.sh to install it."
  exit 1
fi

# Prepare the destination directory
mkdir -p $tgtdir

for f in $words_file $train_text $dev_text; do
  [ ! -s $f ] && echo "No such file $f" && exit 1;
done

[ -z $words_file ] && words_file=$datadir/lang/words.txt
if [ ! -z "$train_text" ] && [ -z "$dev_text" ] ; then
  nr=`cat  $train_text | wc -l`
  nr_dev=$(($nr / 10 ))
  nr_train=$(( $nr - $nr_dev ))
  orig_train_text=$train_text
  head -n $nr_train $train_text > $tgtdir/train_text
  tail -n $nr_dev $train_text > $tgtdir/dev_text

  train_text=$tgtdir/train_text
  dev_text=$tgtdir/dev_text
  echo "Using words file: $words_file"
  echo "Using train text: 9/10 of $orig_train_text"
  echo "Using dev text  : 1/10 of $orig_train_text"
elif [ ! -z "$train_text" ] && [ ! -z "$dev_text" ] ; then
  echo "Using words file: $words_file"
  echo "Using train text: $train_text"
  echo "Using dev text  : $dev_text"
  train_text=$train_text
  dev_text=$dev_text
else
  train_text=$datadir/train/text
  dev_text=$datadir/dev2h/text
  echo "Using words file: $words_file"
  echo "Using train text: $train_text"
  echo "Using dev text  : $dev_text"

fi

[ ! -f $words_file ] && echo >&2 "File $words_file must exist!" && exit 1
[ ! -f $train_text ] && echo >&2 "File $train_text must exist!" && exit 1
[ ! -f $dev_text ] && echo >&2 "File $dev_text must exist!" && exit 1


# Extract the word list from the training dictionary; exclude special symbols
sort $words_file | awk '{print $1}' | grep -v '\#0' | grep -v '<eps>' | grep -v -F "$oov_symbol" > $tgtdir/vocab
if (($?)); then
  echo "Failed to create vocab from $words_file"
  exit 1
else
  # wc vocab # doesn't work due to some encoding issues
  echo vocab contains `cat $tgtdir/vocab | perl -ne 'BEGIN{$l=$w=0;}{split; $w+=$#_; $w++; $l++;}END{print "$l lines, $w words\n";}'`
fi

# corpus file has <s> <\s> tag; remove it
sed -e 's/^\w*\ *//' -e 's/ \+[^ ]\+$//' $train_text | sort -u | \
  perl -ane 'print join(" ", @F[1..$#F]) . "\n" if @F > 1' > $tgtdir/train.txt
if (($?)); then
    echo "Failed to create $tgtdir/train.txt from $train_text"
    exit 1
else
    echo "Removed first and last word (<s> <\s> tags) from every line of $train_text"
    # wc text.train train.txt # doesn't work due to some encoding issues
    echo $train_text contains `cat $train_text | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $w--; $s++;}END{print "$w words, $s sentences\n";}'`
    echo train.txt contains `cat $tgtdir/train.txt | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $s++;}END{print "$w words, $s sentences\n";}'`
fi

# data/dev/text
cat $dev_text | cut -d ' ' -f 2- > $tgtdir/dev.txt
if (($?)); then
    echo "Failed to create $tgtdir/dev.txt from $dev_text"
    exit 1
else
    echo "Removed first word (uid) from every line of $dev_text"
    # wc text.train train.txt # doesn't work due to some encoding issues
    echo $dev_text contains `cat $dev_text | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $w--; $s++;}END{print "$w words, $s sentences\n";}'`
    echo $tgtdir/dev.txt contains `cat $tgtdir/dev.txt | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F;  $s++;}END{print "$w words, $s sentences\n";}'`
fi


if [ ! -z ${LIBLBFGS} ]; then
  #please note that if the switch -map-unk "$oov_symbol" is used with -maxent-convert-to-arpa, ngram-count will segfault
  #instead of that, we simply output the model in the maxent format and convert it using the "ngram"
  echo "-------------------"
  echo "Maxent 3grams"
  echo "-------------------"
  sed 's/'${oov_symbol}'/<unk>/g' $tgtdir/train.txt | \
    ngram-count -lm - -order 3 -text - -vocab $tgtdir/vocab -unk -sort -maxent -maxent-convert-to-arpa|\
    ngram -lm - -order 3 -unk -map-unk "$oov_symbol" -prune-lowprobs -write-lm - |\
    sed 's/<unk>/'${oov_symbol}'/g' | gzip -c > $tgtdir/3gram.me.gz || exit 1

  echo "-------------------"
  echo "Maxent 4grams"
  echo "-------------------"
  sed 's/'${oov_symbol}'/<unk>/g' $tgtdir/train.txt | \
    ngram-count -lm - -order 4 -text - -vocab $tgtdir/vocab -unk -sort -maxent -maxent-convert-to-arpa|\
    ngram -lm - -order 4 -unk -map-unk "$oov_symbol" -prune-lowprobs -write-lm - |\
    sed 's/<unk>/'${oov_symbol}'/g' | gzip -c > $tgtdir/4gram.me.gz || exit 1
else
  echo >&2  "SRILM is not compiled with the support of MaxEnt models."
  echo >&2  "You should use the script in \$KALDI_ROOT/tools/install_srilm.sh"
  echo >&2  "which will take care of compiling the SRILM with MaxEnt support"
  exit 1;
fi


echo "--------------------"
echo "Computing perplexity"
echo "--------------------"
(
  for f in $tgtdir/3gram* ; do ( echo $f; ngram -order 3 -lm $f -unk -map-unk "$oov_symbol" -prune-lowprobs -ppl $tgtdir/dev.txt ) | paste -s -d ' ' ; done
  for f in $tgtdir/4gram* ; do ( echo $f; ngram -order 4 -lm $f -unk -map-unk "$oov_symbol" -prune-lowprobs -ppl $tgtdir/dev.txt ) | paste -s -d ' ' ; done
)  | sort  -r -n -k 15,15g | column -t | tee $tgtdir/perplexities.txt

echo "The perlexity scores report is stored in $tgtdir/perplexities.txt "
echo ""

for best_ngram in {3,4}gram ; do
  outlm=best_${best_ngram}.gz
  lmfilename=$(grep "${best_ngram}" $tgtdir/perplexities.txt | head -n 1 | cut -f 1 -d ' ')
  echo "$outlm -> $lmfilename"
  (cd $tgtdir; rm -f $outlm; ln -sf $(basename $lmfilename) $outlm )
done