File size: 7,278 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import numpy as np
from pydub import AudioSegment
from scipy.ndimage import maximum_filter1d
import json
import hashlib
import tqdm
import os

from scipy.interpolate import interp1d
from scipy.signal import argrelmax



def infer_tempo(beats, fps, hist_smooth=4, no_tempo=-1):
    import madmom
    ibis = np.diff(beats) * fps
    bins = np.bincount(np.round(ibis).astype(int))
    if not bins.any():
        return no_tempo
    if hist_smooth > 0:
        bins = madmom.audio.signal.smooth(bins, hist_smooth)
    intervals = np.arange(len(bins))       
    interpolation_fn = interp1d(intervals, bins, 'quadratic')
    intervals = np.arange(intervals[0], intervals[-1], 0.001)
    tempi = 60.0 * fps / intervals
    print(tempi)
    bins = interpolation_fn(intervals)
    peaks = argrelmax(bins, mode='wrap')[0]
    if len(peaks) == 0:
        return no_tempo
    else:
        sorted_peaks = peaks[np.argsort(bins[peaks])[::-1]]
        return tempi[sorted_peaks][0]


def quantise(beats):
   return [int(round(b * 25)) / 25 for b in beats]


def get_sample(excerpt_path, beats, existed_uuid_list, split="train", key="gtzan", type="beat"):
    # print(f'processing {excerpt_path} ...')
    # print(f'beats: {beats}')

    data_sample = {
        "instruction": "Identify and list the timestamps of all beats in this audio track. Use the format of `0.0s,0.54s,1.0ss, ...`",
        "input": f"<|SOA|>{excerpt_path[len(PATH)+1:]}<|EOA|>",
        "output": ",".join([f"{b}s" for b in beats]),
        "uuid": "",
        "audioid": excerpt_path[len(PATH)+1:], # exclude the '/' at the beginning, to enable os.join.path
        "split": [split],
        "task_type": {"major": ["global_MIR"], "minor": ["beat_tracking"]},
        "domain": "music",
        "source": key,
        "other": {}
    }
    if type == "downbeat":
        data_sample["instruction"] = "Identify and list the timestamps of all downbeats in this audio track. Use the format of `0.0s,1.54s,3.0s, ...`"
        data_sample["task_type"]["minor"] = ["downbeat_tracking"]
        
    # change uuid
    uuid_string = f"{data_sample['instruction']}#{data_sample['input']}#{data_sample['output']}"
    unique_id = hashlib.md5(uuid_string.encode()).hexdigest()[:16] #只取前16位
    if unique_id in existed_uuid_list:
        sha1_hash = hashlib.sha1(uuid_string.encode()).hexdigest()[:16] # 为了相加的时候位数对应上 # 将 MD5 和 SHA1 结果相加,并计算新的 MD5 作为最终的 UUID
        unique_id = hashlib.md5((unique_id + sha1_hash).encode()).hexdigest()[:16]
    existed_uuid_list.add(unique_id)
    data_sample["uuid"] = f"{unique_id}"
    return data_sample


EXCERPT_LENGTH = 30 * 1000  # 30 seconds in milliseconds
MIN_LENGTH = 5 * 1000  # 5 seconds in milliseconds

PATH = '/work/fast_data_yinghao/Beat-Transformer/data'
load_annotation = np.load(f'{PATH}/full_beat_annotation.npz', allow_pickle=True)

for key in ["ballroom"]:  #"rwc", "ballroom", "gtzan", "hainsworth", "carnetic", "smc"
    # ballroom, GTZAN 30s, beat & downbeat
    # hainsworth, (RWC,) carnetic: split audio, beat & downbeat
    # smc: split audio, beat
    annotation = load_annotation[key]

    with open(f'{PATH}/audio_lists/{key}.txt', 'r') as f:
        audio_root = f.readlines()
    audio_root = [item.replace('\n', '') for item in audio_root]
    audio_root = [f'{PATH}/{item[37:]}' for item in audio_root]
    assert(len(annotation) == len(audio_root))

    existed_uuid_list = set()
    data_samples = []
    for idx, ann in tqdm.tqdm(enumerate(annotation)):
        # print(f'processing {audio_root[idx]} ...')
        audio_path = audio_root[idx]
        if len(ann.shape) == 1:
            beats = quantise(ann)
            downbeats = None
        elif key != "rwc":
            beats = quantise(ann[:,0])
            downbeats = quantise(ann[ann[:, 1] == 1, 0])
        else:
            NotImplementedError
            # beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
            # beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
            # beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)             
            # downbeat = annotation[annotation[:, 1] == 1][:, 0]
            # downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
            # downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
            # downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
                            
        # print(f'tempo: {tempo}')

        if key =="ballroom":
            # tempo = infer_tempo(beats, fps=100)
            sample = get_sample(audio_path, beats, existed_uuid_list, key=key)
            data_samples.append(sample)
            sample = get_sample(audio_path, downbeats, existed_uuid_list, key=key, type="downbeat")
            data_samples.append(sample)          
        elif key == "gtzan":
            if "jazz.00054" in audio_path:
                continue
            sample = get_sample(audio_path, beats, existed_uuid_list, split="test", key=key)
            data_samples.append(sample)
            if downbeats:
                sample = get_sample(audio_path, downbeats, existed_uuid_list, split="test", key=key, type="downbeat")
                data_samples.append(sample)                    
        else:
            audio = AudioSegment.from_file(audio_path)
            for i in range(0, len(audio), EXCERPT_LENGTH):
                end = i + EXCERPT_LENGTH
                if end < len(audio):
                    excerpt = audio[i:end]
                else:
                    excerpt = audio[i:]
                    # Discard short audio clips
                    if len(excerpt) < MIN_LENGTH:
                        break
                    end = len(audio)
                    
                # # Save the excerpt to the same directory with a new name
                excerpt_path = f"{audio_path[:-4]}_{i//EXCERPT_LENGTH}.wav"
                if not os.path.exists(excerpt_path):
                    excerpt.export(excerpt_path, format="wav")

                excerpt_beats = [b%30 for b in beats if i * 30 <= b <= (i + 1) * 30]
                if downbeats:
                    excerpt_downbeats = [db%30 for db in downbeats if i * 30 <= db <= (i + 1) * 30]
                else:
                    excerpt_downbeats = None
                
                # tempo = infer_tempo(excerpt_beats, fps=100)
                sample = get_sample(excerpt_path, excerpt_beats, existed_uuid_list, key=key)
                data_samples.append(sample)
                if downbeats:
                    sample = get_sample(excerpt_path, excerpt_downbeats, existed_uuid_list, key=key, type="downbeat")    
                    data_samples.append(sample)      
            # Remove the original audio file
            # os.remove(audio_path)          
        
        # break
        

    split = "test" if key == "gtzan" else "train"
    output_file_path = f'{PATH}/../{key}_{split}.jsonl'  # Replace with the desired output path
    with open(output_file_path, 'w') as outfile:
        # for sample in data_samples:
        json.dump(data_samples, outfile)

        # outfile.write('\n')
    outfile.close()