File size: 10,621 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch 
from torch import nn 
from DilatedTransformerLayer import DilatedTransformerLayer


class DilatedTransformerModel(nn.Module):
    def __init__(self, attn_len=5, ntoken=2, dmodel=128, nhead=2, d_hid=512, nlayers=9, norm_first=True, dropout=.1):
        super(DilatedTransformerModel, self).__init__()
        self.nhead = nhead
        self.nlayers = nlayers
        self.attn_len = attn_len
        self.head_dim = dmodel // nhead
        assert self.head_dim * nhead == dmodel, "embed_dim must be divisible by num_heads"

        #self.Er = nn.Parameter(torch.randn(nlayers, nhead, self.head_dim, attn_len))

        self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 3), stride=1, padding=(2, 0))#126
        #self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3, 3), stride=1, padding=(1, 0))#79
        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#26
        self.dropout1 = nn.Dropout(p=dropout)
        
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0))#31
        #self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0))#15
        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#5
        self.dropout2 = nn.Dropout(p=dropout)
        
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 6), stride=1, padding=(1, 0))#5
        #self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 3), stride=1, padding=(1, 0))#3
        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#1
        self.dropout3 = nn.Dropout(p=dropout)
        
        self.Transformer_layers = nn.ModuleDict({})
        for idx in range(nlayers):
            self.Transformer_layers[f'Transformer_layer_{idx}'] = DilatedTransformerLayer(dmodel, nhead, d_hid, dropout, Er_provided=False, attn_len=attn_len, norm_first=norm_first)

        self.out_linear = nn.Linear(dmodel, ntoken)

        self.dropout_t = nn.Dropout(p=.5)
        self.out_linear_t = nn.Linear(dmodel, 300)
        

    def forward(self, x):
        #x: (batch, time, dmodel), FloatTensor
        x = x.unsqueeze(1)  #(batch, channel, time, dmodel)
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = torch.relu(x)
        x = self.dropout1(x)

        x = self.conv2(x)
        x = self.maxpool2(x)
        x = torch.relu(x)
        x = self.dropout2(x)

        x = self.conv3(x)
        x = self.maxpool3(x)
        x = torch.relu(x)
        x = self.dropout3(x)    #(batch, channel, time, 1)
        x = x.transpose(1, 3).squeeze(1).contiguous()    #(batch, time, channel=dmodel)
        
        batch, time, dmodel = x.shape
        t = []
        for layer in range(self.nlayers):
            x, skip = self.Transformer_layers[f'Transformer_layer_{layer}'](x, layer=layer)
            t.append(skip)

        x = torch.relu(x)
        x = self.out_linear(x)

        t = torch.stack(t, axis=-1).sum(dim=-1)
        t = torch.relu(t)
        t = self.dropout_t(t)
        t = t.mean(dim=1) #(batch, dmodel)
        t = self.out_linear_t(t)

        return x, t

    def inference(self, x):
        #x: (batch, time, dmodel), FloatTensor
        x = x.unsqueeze(1)  #(batch, channel, time, dmodel)
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = torch.relu(x)
        x = self.dropout1(x)

        x = self.conv2(x)
        x = self.maxpool2(x)
        x = torch.relu(x)
        x = self.dropout2(x)

        x = self.conv3(x)
        x = self.maxpool3(x)
        x = torch.relu(x)
        x = self.dropout3(x)    #(batch, channel, time, 1)
        x = x.transpose(1, 3).squeeze(1).contiguous()    #(batch, time, channel=dmodel)
        
        batch, time, dmodel = x.shape
        t = []
        attn = [torch.eye(time, device=x.device).repeat(batch, self.nhead, 1, 1)]
        for layer in range(self.nlayers):
            x, skip, layer_attn = self.Transformer_layers[f'Transformer_layer_{layer}'].inference(x, layer=layer)
            t.append(skip)
            attn.append(torch.matmul(attn[-1], layer_attn.transpose(-2, -1)))


        x = torch.relu(x)
        x = self.out_linear(x)

        t = torch.stack(t, axis=-1).sum(dim=-1)
        t = torch.relu(t)
        t = self.dropout_t(t)
        t = t.mean(dim=1) #(batch, dmodel)
        t = self.out_linear_t(t)

        return x, t, attn


if __name__ == '__main__':
    from non_demix_spectrogram_dataset import audioDataset
    from torch.utils.data import DataLoader
    from tqdm import tqdm
    import numpy as np
    import madmom
    from utils import AverageMeter
    SAMPLE_SIZE = int(44100 / 1024 * 180)
    INSTR =5
    FPS = 44100 / 1024
    NUM_FOLDS = 8
    #model
    NORM_FIRST=True
    ATTN_LEN=5
    NTOKEN=2
    DMODEL=256
    NHEAD=8
    DHID=512
    NLAYER=9
    DROPOUT=.1

    DEVICE=f'cuda:{0}'
    TRAIN_BATCH_SIZE = 1

    DATASET_PATH = './data/demix_spectrogram_data.npz'
    ANNOTATION_PATH = './data/full_beat_annotation.npz'
    DATA_TO_LOAD = ['gtzan']
    TEST_ONLY = ['gtzan']

    model = DilatedTransformerModel(attn_len=ATTN_LEN,
                                    ntoken=NTOKEN, 
                                    dmodel=DMODEL, 
                                    nhead=NHEAD, 
                                    d_hid=DHID, 
                                    nlayers=NLAYER, 
                                    norm_first=NORM_FIRST,
                                    dropout=DROPOUT
                                    )
    model.load_state_dict(torch.load("/mnt/c/Users/zhaoj/Desktop/trf_param_018.pt", map_location=torch.device(DEVICE)))
    model.to(DEVICE)


    dataset = audioDataset(data_to_load=DATA_TO_LOAD,
                        test_only_data = TEST_ONLY,
                        data_path = DATASET_PATH, 
                        annotation_path = ANNOTATION_PATH,
                        fps = FPS,
                        sample_size = SAMPLE_SIZE,
                        num_folds = 1)
    _, _, test_set = dataset.get_fold(fold=0)
    #loader = DataLoader(val_set, batch_size=1, shuffle=False)
    loader = DataLoader(test_set, batch_size=1, shuffle=False)


    beat_DBN_meter = AverageMeter()
    downbeat_DBN_meter = AverageMeter()

    beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, 
                                                                    transition_lambda=100, 
                                                                    observation_lambda=6, 
                                                                    num_tempi=None, 
                                                                    threshold=0.2)

    downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, 
                                                                    transition_lambda=100, 
                                                                    observation_lambda=6, 
                                                                    num_tempi=None, 
                                                                    threshold=0.2)

    activations = {}
    beat_gt = {}
    downbeat_gt = {}

    count = 0
    with torch.no_grad():
        for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)):
            #data
            data = data.float().to(DEVICE)
            print(data.shape)
            pred, _ = model(data)
            beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy()
            downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy()

            beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS)
            downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS)

            dataset_key = dataset_key[0]
            root = root[0]
            if not dataset_key in activations:
                activations[dataset_key] = []
                beat_gt[dataset_key] = []
                downbeat_gt[dataset_key] = []
            activations[dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0))
            beat_gt[dataset_key].append(beat)
            downbeat_gt[dataset_key].append(downbeat)

            #count += 1
            #if count == 50:
            #    break

    for dataset_key in activations:
        print(f'inferencing on {dataset_key} ...')
        beat_error = 0
        downbeat_error = 0
        for i in tqdm(range(len(activations[dataset_key]))):
            pred = activations[dataset_key][i]
            #print(pred.shape)
            beat = beat_gt[dataset_key][i]
            downbeat = downbeat_gt[dataset_key][i]

            try:
                dbn_beat_pred = beat_tracker(pred[0])
                beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat)
                beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure)
                beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt)
                beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt)
                
            except Exception as e:
                #print(f'beat inference encounter exception {e}')
                beat_error += 1


            try:
                combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1)   #(T, 2)
                #print(combined_act.shape)
                dbn_downbeat_pred = downbeat_tracker(combined_act)
                dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0]

                downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat)
                downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure)
                downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt)
                downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt)
            except Exception as e:
                #print(f'downbeat inference encounter exception {e}')
                downbeat_error += 1
        print(f'beat error: {beat_error}; downbeat error: {downbeat_error}')

    print('DBN beat detection')
    for key in beat_DBN_meter.avg.keys():
        print('\t', key, beat_DBN_meter.avg[key])

    print('DBN downbeat detection')
    for key in downbeat_DBN_meter.avg.keys():
        print('\t', key, downbeat_DBN_meter.avg[key])