File size: 10,621 Bytes
659e74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import torch
from torch import nn
from DilatedTransformerLayer import DilatedTransformerLayer
class DilatedTransformerModel(nn.Module):
def __init__(self, attn_len=5, ntoken=2, dmodel=128, nhead=2, d_hid=512, nlayers=9, norm_first=True, dropout=.1):
super(DilatedTransformerModel, self).__init__()
self.nhead = nhead
self.nlayers = nlayers
self.attn_len = attn_len
self.head_dim = dmodel // nhead
assert self.head_dim * nhead == dmodel, "embed_dim must be divisible by num_heads"
#self.Er = nn.Parameter(torch.randn(nlayers, nhead, self.head_dim, attn_len))
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 3), stride=1, padding=(2, 0))#126
#self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3, 3), stride=1, padding=(1, 0))#79
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#26
self.dropout1 = nn.Dropout(p=dropout)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0))#31
#self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0))#15
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#5
self.dropout2 = nn.Dropout(p=dropout)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 6), stride=1, padding=(1, 0))#5
#self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 3), stride=1, padding=(1, 0))#3
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#1
self.dropout3 = nn.Dropout(p=dropout)
self.Transformer_layers = nn.ModuleDict({})
for idx in range(nlayers):
self.Transformer_layers[f'Transformer_layer_{idx}'] = DilatedTransformerLayer(dmodel, nhead, d_hid, dropout, Er_provided=False, attn_len=attn_len, norm_first=norm_first)
self.out_linear = nn.Linear(dmodel, ntoken)
self.dropout_t = nn.Dropout(p=.5)
self.out_linear_t = nn.Linear(dmodel, 300)
def forward(self, x):
#x: (batch, time, dmodel), FloatTensor
x = x.unsqueeze(1) #(batch, channel, time, dmodel)
x = self.conv1(x)
x = self.maxpool1(x)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = torch.relu(x)
x = self.dropout2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = torch.relu(x)
x = self.dropout3(x) #(batch, channel, time, 1)
x = x.transpose(1, 3).squeeze(1).contiguous() #(batch, time, channel=dmodel)
batch, time, dmodel = x.shape
t = []
for layer in range(self.nlayers):
x, skip = self.Transformer_layers[f'Transformer_layer_{layer}'](x, layer=layer)
t.append(skip)
x = torch.relu(x)
x = self.out_linear(x)
t = torch.stack(t, axis=-1).sum(dim=-1)
t = torch.relu(t)
t = self.dropout_t(t)
t = t.mean(dim=1) #(batch, dmodel)
t = self.out_linear_t(t)
return x, t
def inference(self, x):
#x: (batch, time, dmodel), FloatTensor
x = x.unsqueeze(1) #(batch, channel, time, dmodel)
x = self.conv1(x)
x = self.maxpool1(x)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = torch.relu(x)
x = self.dropout2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = torch.relu(x)
x = self.dropout3(x) #(batch, channel, time, 1)
x = x.transpose(1, 3).squeeze(1).contiguous() #(batch, time, channel=dmodel)
batch, time, dmodel = x.shape
t = []
attn = [torch.eye(time, device=x.device).repeat(batch, self.nhead, 1, 1)]
for layer in range(self.nlayers):
x, skip, layer_attn = self.Transformer_layers[f'Transformer_layer_{layer}'].inference(x, layer=layer)
t.append(skip)
attn.append(torch.matmul(attn[-1], layer_attn.transpose(-2, -1)))
x = torch.relu(x)
x = self.out_linear(x)
t = torch.stack(t, axis=-1).sum(dim=-1)
t = torch.relu(t)
t = self.dropout_t(t)
t = t.mean(dim=1) #(batch, dmodel)
t = self.out_linear_t(t)
return x, t, attn
if __name__ == '__main__':
from non_demix_spectrogram_dataset import audioDataset
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np
import madmom
from utils import AverageMeter
SAMPLE_SIZE = int(44100 / 1024 * 180)
INSTR =5
FPS = 44100 / 1024
NUM_FOLDS = 8
#model
NORM_FIRST=True
ATTN_LEN=5
NTOKEN=2
DMODEL=256
NHEAD=8
DHID=512
NLAYER=9
DROPOUT=.1
DEVICE=f'cuda:{0}'
TRAIN_BATCH_SIZE = 1
DATASET_PATH = './data/demix_spectrogram_data.npz'
ANNOTATION_PATH = './data/full_beat_annotation.npz'
DATA_TO_LOAD = ['gtzan']
TEST_ONLY = ['gtzan']
model = DilatedTransformerModel(attn_len=ATTN_LEN,
ntoken=NTOKEN,
dmodel=DMODEL,
nhead=NHEAD,
d_hid=DHID,
nlayers=NLAYER,
norm_first=NORM_FIRST,
dropout=DROPOUT
)
model.load_state_dict(torch.load("/mnt/c/Users/zhaoj/Desktop/trf_param_018.pt", map_location=torch.device(DEVICE)))
model.to(DEVICE)
dataset = audioDataset(data_to_load=DATA_TO_LOAD,
test_only_data = TEST_ONLY,
data_path = DATASET_PATH,
annotation_path = ANNOTATION_PATH,
fps = FPS,
sample_size = SAMPLE_SIZE,
num_folds = 1)
_, _, test_set = dataset.get_fold(fold=0)
#loader = DataLoader(val_set, batch_size=1, shuffle=False)
loader = DataLoader(test_set, batch_size=1, shuffle=False)
beat_DBN_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
activations = {}
beat_gt = {}
downbeat_gt = {}
count = 0
with torch.no_grad():
for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)):
#data
data = data.float().to(DEVICE)
print(data.shape)
pred, _ = model(data)
beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy()
downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy()
beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS)
downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS)
dataset_key = dataset_key[0]
root = root[0]
if not dataset_key in activations:
activations[dataset_key] = []
beat_gt[dataset_key] = []
downbeat_gt[dataset_key] = []
activations[dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0))
beat_gt[dataset_key].append(beat)
downbeat_gt[dataset_key].append(downbeat)
#count += 1
#if count == 50:
# break
for dataset_key in activations:
print(f'inferencing on {dataset_key} ...')
beat_error = 0
downbeat_error = 0
for i in tqdm(range(len(activations[dataset_key]))):
pred = activations[dataset_key][i]
#print(pred.shape)
beat = beat_gt[dataset_key][i]
downbeat = downbeat_gt[dataset_key][i]
try:
dbn_beat_pred = beat_tracker(pred[0])
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat)
beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure)
beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt)
beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt)
except Exception as e:
#print(f'beat inference encounter exception {e}')
beat_error += 1
try:
combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1) #(T, 2)
#print(combined_act.shape)
dbn_downbeat_pred = downbeat_tracker(combined_act)
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0]
downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat)
downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure)
downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt)
downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt)
except Exception as e:
#print(f'downbeat inference encounter exception {e}')
downbeat_error += 1
print(f'beat error: {beat_error}; downbeat error: {downbeat_error}')
print('DBN beat detection')
for key in beat_DBN_meter.avg.keys():
print('\t', key, beat_DBN_meter.avg[key])
print('DBN downbeat detection')
for key in downbeat_DBN_meter.avg.keys():
print('\t', key, downbeat_DBN_meter.avg[key]) |