File size: 5,014 Bytes
bb01eca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import hashlib
import json
import tqdm
import os
import pandas as pd



PATH = "/work/fast_data_yinghao/music4all"

pd_list = pd.read_csv(f"{PATH}/id_genres.csv", sep="\t")
genre_dict = pd_list.set_index('id')['genres'].to_dict()
# genres = set([j for i in genre_dict.values() for j in i.split(",")])

pd_list = pd.read_csv(f"{PATH}/id_lang.csv", sep="\t")
lang_dict = pd_list.set_index('id')['lang'].to_dict()
# langs = set([j for i in lang_dict.values() for j in i.split(",")])

pd_list = pd.read_csv(f"{PATH}/id_tags.csv", sep="\t")
tag_dict = pd_list.set_index('id')['tags'].to_dict()
# tags = set([j for i in tag_dict.values() for j in i.split(",")])

test_jsons = json.load(open(f"{PATH}/SongInterpretation/dataset_test.json","r"))
train_jsons = json.load(open(f"{PATH}/SongInterpretation/dataset_not_negative_256_clean.json","r")) 
train_list = [i["music4all_id"] for i in train_jsons]
# train_dict = {i["music4all_id"]:i["comment"] for i in train_jsons} 1 id may have multiple comments
test_list = [i["music4all_id"] for i in test_jsons]
# test_dict = {i["music4all_id"]:i["comment"] for i in test_jsons}

existed_uuid_list = set()

def get_sample(id, instruction, output, task, split="train"):
    data_sample = {
        "instruction": instruction,
        "input": f"<|SOA|>{id}.wav<|EOA|>",
        "output": output,
        "uuid": "",
        "audioid": f"{id}.wav",
        "split": [split],
        "task_type": {"major": ["global_MIR"], "minor": [task]},
        "domain": "music",
        "source": "Music4All",
        "other": {}
    }
    # change uuid
    uuid_string = f"{data_sample['instruction']}#{data_sample['input']}#{data_sample['output']}"
    unique_id = hashlib.md5(uuid_string.encode()).hexdigest()[:16] #只取前16位
    if unique_id in existed_uuid_list:
        sha1_hash = hashlib.sha1(uuid_string.encode()).hexdigest()[:16] # 为了相加的时候位数对应上 # 将 MD5 和 SHA1 结果相加,并计算新的 MD5 作为最终的 UUID
        unique_id = hashlib.md5((unique_id + sha1_hash).encode()).hexdigest()[:16]
    existed_uuid_list.add(unique_id)
    data_sample["uuid"] = f"{unique_id}"
    
    return data_sample
    

genre_samples, lang_samples, tag_samples = [], [], []
comment_train_samples, comment_test_samples = [], []
count = 0
for id in tqdm.tqdm(genre_dict.keys()):
    if id in test_list:
        continue    
        
    audio_path = os.path.join(f"{PATH}", f"audios/{id}.wav")
    data_sample = get_sample(id, 
                             "What is the genre of this music?", 
                             genre_dict[id], 
                             "genre_classification")
    genre_samples.append(data_sample)
    if count < 10000:
        data_sample = get_sample(id, 
                                "Which language from the following list is this music? List: ['zh-cn', 'de', 'sw', 'el', 'en', 'cy', 'hu', 'ar', 'so', 'lt', 'ja', 'ru', 'es', 'fr', 'sk', 'bg', 'et', 'th', 'sq', 'INTRUMENTAL', 'lv', 'pa', 'cs', 'no', 'hi', 'ca', 'pt', 'ko', 'nl', 'fa', 'sv', 'tr', 'sl', 'bn', 'pl', 'uk', 'id', 'he', 'af', 'ro', 'hr', 'it', 'vi', 'fi', 'tl', 'da']", 
                                lang_dict[id], 
                                "language_detection")
        lang_samples.append(data_sample)
        if lang_dict[id] == "en":
            count += 1
    data_sample = get_sample(id, 
                             "What are the tags of this music?", 
                             tag_dict[id], 
                             "music_tagging")
    tag_samples.append(data_sample)
    
    # break

comment_test_samples = [get_sample(data["music4all_id"], 
                            "You are the user of Spotify, please give a commments on the interpretation of the lyrics.", 
                            data["comment"], 
                            "lyrics_interpretation",
                            split="test")
                            for data in test_jsons]
comment_train_samples = [get_sample(data["music4all_id"], 
                            "You are the user of Spotify, please give a commments on the interpretation of the lyrics.", 
                            data["comment"], 
                            "lyrics_interpretation")
                            for data in train_jsons]

print("genre_samples:", len(genre_samples))
print("lang_samples:", len(lang_samples))
print("tag_samples:", len(tag_samples))
print("comment_train_samples:", len(comment_train_samples))
print("comment_test_samples:", len(comment_test_samples))
# Save to JSONL format
output_file_path = f'{PATH}/Music4all_train.jsonl'  # Replace with the desired output path
with open(output_file_path, 'w') as outfile:
    # for sample in data_samples:
    json.dump( comment_train_samples, outfile)
    # genre_samples + tag_samples + lang_samples +

    # outfile.write('\n')
outfile.close()

output_file_path = f'{PATH}/Music4all_test.jsonl'  
with open(output_file_path, 'w') as outfile:
    json.dump(comment_test_samples, outfile)
outfile.close()