File size: 4,126 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import math
import torch
import itertools as it
from torch.optim import Optimizer
from collections import defaultdict

class Lookahead(Optimizer):
    '''
    PyTorch implementation of the lookahead wrapper.
    Lookahead Optimizer: https://arxiv.org/abs/1907.08610
    '''
    def __init__(self, optimizer,alpha=0.5, k=6,pullback_momentum="none"):
        '''
        :param optimizer:inner optimizer
        :param k (int): number of lookahead steps
        :param alpha(float): linear interpolation factor. 1.0 recovers the inner optimizer.
        :param pullback_momentum (str): change to inner optimizer momentum on interpolation update
        '''
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        self.optimizer = optimizer
        self.param_groups = self.optimizer.param_groups
        self.alpha = alpha
        self.k = k
        self.step_counter = 0
        assert pullback_momentum in ["reset", "pullback", "none"]
        self.pullback_momentum = pullback_momentum
        self.state = defaultdict(dict)

        # Cache the current optimizer parameters
        for group in self.optimizer.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                param_state['cached_params'] = torch.zeros_like(p.data)
                param_state['cached_params'].copy_(p.data)

    def __getstate__(self):
        return {
            'state': self.state,
            'optimizer': self.optimizer,
            'alpha': self.alpha,
            'step_counter': self.step_counter,
            'k':self.k,
            'pullback_momentum': self.pullback_momentum
        }

    def zero_grad(self):
        self.optimizer.zero_grad()

    def state_dict(self):
        return self.optimizer.state_dict()

    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)

    def _backup_and_load_cache(self):
        """Useful for performing evaluation on the slow weights (which typically generalize better)
        """
        for group in self.optimizer.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                param_state['backup_params'] = torch.zeros_like(p.data)
                param_state['backup_params'].copy_(p.data)
                p.data.copy_(param_state['cached_params'])

    def _clear_and_load_backup(self):
        for group in self.optimizer.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                p.data.copy_(param_state['backup_params'])
                del param_state['backup_params']

    def step(self, closure=None):
        """Performs a single Lookahead optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = self.optimizer.step(closure)
        self.step_counter += 1

        if self.step_counter >= self.k:
            self.step_counter = 0
            # Lookahead and cache the current optimizer parameters
            for group in self.optimizer.param_groups:
                for p in group['params']:
                    param_state = self.state[p]
                    p.data.mul_(self.alpha).add_(1.0 - self.alpha, param_state['cached_params'])  # crucial line
                    param_state['cached_params'].copy_(p.data)
                    if self.pullback_momentum == "pullback":
                        internal_momentum = self.optimizer.state[p]["momentum_buffer"]
                        self.optimizer.state[p]["momentum_buffer"] = internal_momentum.mul_(self.alpha).add_(
                            1.0 - self.alpha, param_state["cached_mom"])
                        param_state["cached_mom"] = self.optimizer.state[p]["momentum_buffer"]
                    elif self.pullback_momentum == "reset":
                        self.optimizer.state[p]["momentum_buffer"] = torch.zeros_like(p.data)

        return loss