File size: 17,549 Bytes
659e74f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import sys
import time
import madmom
import torch
from tqdm import tqdm
from torch import nn
from torch import optim
from optimizer import Lookahead
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from utils import AverageMeter, epoch_time, infer_beat_with_DBN, infer_downbeat_with_DBN
from spectrogram_dataset import audioDataset

from DilatedTransformer import Demixed_DilatedTransformerModel

import warnings
warnings.filterwarnings('ignore')


DEBUG_MODE = int(sys.argv[1])
FOLD = int(sys.argv[2])
GPU = int(sys.argv[3])
PROJECT_NAME = 'Beat_Transformer'

###############################################################################
# Load config
###############################################################################
#data
SAMPLE_SIZE = int(44100 / 1024 * 180)
INSTR =5
FPS = 44100 / 1024
NUM_FOLDS = 8
#model
NORM_FIRST=True
ATTN_LEN=5
NTOKEN=2
DMODEL=256
NHEAD=8
DHID=1024
NLAYER=9
DROPOUT=.1
#training
DEVICE=f'cuda:{GPU}'
TRAIN_BATCH_SIZE = 1
LEARNING_RATE = 1e-3
DECAY = 0.99995
N_EPOCH = 30
CLIP=.5
#directories
DATASET_PATH = './data/demix_spectrogram_data.npz'
ANNOTATION_PATH = './data/full_beat_annotation.npz'
DATA_TO_LOAD = ['ballroom', 'ballroom', 'gtzan', 'hainsworth', 'smc', 'harmonix', 'carnetic']
TEST_ONLY = ['gtzan']

SAVE_PATH = f'./save/train_log/{str(GPU).zfill(2)}_{PROJECT_NAME}'

if DEBUG_MODE:
    N_EPOCH = 1
    TRAIN_BATCH_SIZE = 1
    DECAY = 0.9995
    DATA_TO_LOAD = ['hainsworth']   #hainsworth, smc
    SAVE_PATH = os.path.join(SAVE_PATH, 'debug')

print(f'\nProject initialized: {PROJECT_NAME}\n', flush=True)


print(f'\nFold {FOLD}')
###############################################################################
# Initialize fold
###############################################################################
project_path = os.path.join(SAVE_PATH, f'Fold_{FOLD}')

MODEL_PATH = os.path.join(project_path, 'model') 
LOG_PATH = os.path.join(project_path, 'log')

if not os.path.exists(MODEL_PATH):
    os.makedirs(MODEL_PATH)

if not os.path.exists(LOG_PATH):
    os.makedirs(LOG_PATH)

loss_writer = SummaryWriter(os.path.join(LOG_PATH, 'loss'))
#beat_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_acc'))
beat_ll_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_likelihood'))
downbeat_ll_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_likelihood'))
beat_pr_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_precision'))
downbeat_pr_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_precision'))
beat_DBN_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_DBN_acc'))
#downbeat_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_acc'))
downbeat_DBN_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_DBN_acc'))


###############################################################################
# model parameter
###############################################################################
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN,
                                                instr=INSTR,
                                                ntoken=NTOKEN, 
                                                dmodel=DMODEL, 
                                                nhead=NHEAD, 
                                                d_hid=DHID, 
                                                nlayers=NLAYER, 
                                                norm_first=NORM_FIRST,
                                                dropout=DROPOUT
                                                )

model.to(DEVICE)


###############################################################################
# load data
###############################################################################
dataset = audioDataset(data_to_load=DATA_TO_LOAD,
                        test_only_data = TEST_ONLY,
                        data_path = DATASET_PATH, 
                        annotation_path = ANNOTATION_PATH,
                        fps = FPS,
                        sample_size = SAMPLE_SIZE,
                        num_folds = NUM_FOLDS)
# Fold Splitting
train_set, val_set, test_set = dataset.get_fold(fold=FOLD)
train_loader = DataLoader(train_set, batch_size=TRAIN_BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
#test_loader = DataLoader(test_set, batch_size=1, shuffle=False)


###############################################################################
# Optimizer and Criterion
###############################################################################
optimizer = optim.RAdam(model.parameters(), lr=LEARNING_RATE)
optimizer = Lookahead(optimizer=optimizer, k=5, alpha=0.5)
#scheduler = MinExponentialLR(optimizer, gamma=DECAY, minimum=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=.2, patience=2, threshold=1e-3, min_lr=1e-7)
loss_func = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.LongTensor([1, 1]).to(DEVICE))
loss_tempo = nn.BCELoss(reduction='none')

beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, transition_lambda=10, threshold=0.05)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, transition_lambda=10)


###############################################################################
# Main
###############################################################################
def train(model, train_loader, optimizer, scheduler, loss_func, loss_tempo, clip, epoch, device):
    print('training ...', flush=True)
    num_batch = len(train_loader)
    loss_meter_b = AverageMeter()
    loss_meter_t = AverageMeter()
    beat_meter = AverageMeter()
    beat_DBN_meter = AverageMeter()
    downbeat_meter = AverageMeter()
    downbeat_DBN_meter = AverageMeter()
    nan_count = []
    for idx, (dataset_key, data, beat_gt, downbeat_gt, tempo_gt) in tqdm(enumerate(train_loader), total=num_batch):
        #try:
        #data
        data = data.float().to(device)
        #annotation
        beat_gt = beat_gt.to(device)
        downbeat_gt = downbeat_gt.to(device)
        gt = torch.cat([beat_gt.unsqueeze(-1), downbeat_gt.unsqueeze(-1)], dim=-1).float().to(device) #(batch, T', 2)
        tempo_gt = tempo_gt.to(device)
        
        optimizer.zero_grad()
        pred, tempo = model(data)
        #print(pred.shape, gt.shape)
        valid_gt = gt.clone()
        valid_gt[gt == -1] = 0
        loss = loss_func(pred, valid_gt)
        weight = (1 - torch.as_tensor(gt == -1, dtype=torch.int32)).to(device)
        loss = (weight * loss).mean(dim=(0, 1)).sum()

        valid_tempo_gt = tempo_gt.clone()
        valid_tempo_gt[tempo_gt == -1] = 0
        loss_t = loss_tempo(torch.softmax(tempo, dim=-1), valid_tempo_gt)
        weight = (1 - torch.as_tensor(tempo_gt == -1, dtype=torch.int32)).to(device)
        loss_t = (weight * loss_t).mean()
        #except RuntimeError:
        #    continue
        
        loss_meter_t.update('train/loss', loss_t.item())
        loss_meter_b.update('train/loss', loss.item())
        if ((dataset_key[0] == 'musicnet') and (-1 in tempo_gt)):
            loss =  loss * 0 #do not trust musicnet beat annotation if tempo is none

        #try:
        loss = loss + loss_t
        #except RuntimeError:
        #    continue
        if torch.isnan(loss):
            nan_count.append(str(dataset_key)+'\n')
            with open('./home/zhaojw/workspace/efficient_dilated_MultiSpec_Transformer/nancount.txt', 'w') as f:
                f.writelines(nan_count)
            continue

        #downbeat_loss = loss_func(downbeat_pred, downbeat_gt)
        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
        optimizer.step()
        #scheduler.step()

        #binary_acc = binary_accuracy(pred[:, :, :2], gt[:, :, :2])
        #loss_meter.update('train/loss', loss.item())
        #loss_meter.update('train/binary_acc', binary_acc.item())

        #beat_acc = beat_accuracy(pred[:, :, 0], gt[:, :, 0], FPS/DS_RATIO)
        #for key in beat_acc:
        #    beat_meter.update('train/' + key, beat_acc[key])

        
        #downbeat_acc = beat_accuracy(pred[:, :, 1], gt[:, :, 1], FPS/DS_RATIO)
        #if not dataset_key[0] == 'smc':
        #    for key in downbeat_acc:
        #        downbeat_meter.update('train/' + key, downbeat_acc[key])


        if DEBUG_MODE:
            print('------------training------------', flush=True)
            print('Epoch: [{0}][{1}/{2}]'.format(epoch+1, idx, num_batch), flush=True)
            print('train beat loss:', loss.item()-loss_t.item(), flush=True)
            print('train tempo loss:', loss_t.item(), flush=True)
            #print('train binary batch accuracy', binary_acc.item(), flush=True)
            #print('beat accuracy:', list(beat_acc.values()), flush=True)
            #print('downbeat accuracy:', list(downbeat_acc.values()), flush=True)

        loss_writer.add_scalar('train/loss_beat', loss_meter_b.avg['train/loss'], epoch * num_batch + idx)
        loss_writer.add_scalar('train/loss_tempo', loss_meter_t.avg['train/loss'], epoch * num_batch + idx)
        loss_writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], epoch * num_batch + idx)

        #for key in beat_meter.avg.keys():
        #    if 'train' in key:    
        #        beat_writer.add_scalar(key, beat_meter.avg[key], epoch * num_batch + idx)
        #for key in beat_DBN_meter.avg.keys():
        #    if 'train' in key:    
        #        beat_DBN_writer.add_scalar(key, beat_DBN_meter.avg[key], epoch * num_batch + idx)
        #for key in downbeat_meter.avg.keys():
        #    if 'train' in key:    
        #        downbeat_writer.add_scalar(key, downbeat_meter.avg[key], epoch * num_batch + idx)
        #for key in downbeat_DBN_meter.avg.keys():
        #    if 'train' in key:    
        #        downbeat_DBN_writer.add_scalar(key, downbeat_DBN_meter.avg[key], epoch * num_batch + idx)
    return loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter


def evaluate(model, val_loader, loss_func, loss_tempo, epoch, device):
    print('validating ...', flush=True)
    num_batch = len(val_loader)
    loss_meter_b = AverageMeter()
    loss_meter_t = AverageMeter()
    beat_meter = AverageMeter()
    beat_DBN_meter = AverageMeter()
    downbeat_meter = AverageMeter()
    downbeat_DBN_meter = AverageMeter()
    with torch.no_grad():
        for idx, (dataset_key, data, beat_gt, downbeat_gt, tempo_gt) in tqdm(enumerate(val_loader), total=num_batch):
            #try:
            #data
            data = data.float().to(device)
            #annotation
            beat_gt = beat_gt.to(device)
            downbeat_gt = downbeat_gt.to(device)
            gt = torch.cat([beat_gt.unsqueeze(-1), downbeat_gt.unsqueeze(-1)], dim=-1).float().to(device) #(batch, T', 2)
            #tempo_gt = tempo_gt.reshape(-1).long().to(device)
            tempo_gt = tempo_gt.float().to(device)

            pred, tempo = model(data)
            
            valid_gt = gt.clone()
            valid_gt[gt == -1] = 0
            loss = loss_func(pred, valid_gt)
            weight = (1 - torch.as_tensor(gt == -1, dtype=torch.int32)).to(device)
            loss = (weight * loss).mean(dim=(0, 1)).sum()

            valid_tempo_gt = tempo_gt.clone()
            valid_tempo_gt[tempo_gt == -1] = 0
            loss_t = loss_tempo(torch.softmax(tempo, dim=-1), valid_tempo_gt)
            weight = (1 - torch.as_tensor(tempo_gt == -1, dtype=torch.int32)).to(device)
            loss_t = (weight * loss_t).mean()
            #except RuntimeError:
            #    continue
            
            if not dataset_key[0] == 'gtzan':
                loss_meter_b.update('val/loss', loss.item())
            else:
                loss_meter_b.update('val/loss_nontrain', loss.item())

            if not dataset_key[0] == 'gtzan':
                loss_meter_t.update('val/loss', loss_t.item())
            else:
                loss_meter_t.update('val/loss_nontrain', loss_t.item())
            
            #binary_acc = binary_accuracy(pred[:, :, :2], gt[:, :, :2])
            #if not dataset_key[0][0] == 'gtzan':
            #    loss_meter.update('val/loss', loss.item())
            #    loss_meter.update('val/binary_acc', binary_acc.item())
            #else:
            #    loss_meter.update('val/loss_nontrain', loss.item())
            #    loss_meter.update('val/binary_acc_nontrain', binary_acc.item())
            

            #try:
            #beat_acc = beat_accuracy(pred[:, :, 0], gt[:, :, 0], FPS/DS_RATIO)
            #for key in beat_acc:
            #    beat_meter.update(f'val-{dataset_key[0][0]}/{key}', beat_acc[key])

            beat_acc_DBN = infer_beat_with_DBN(pred[:, :, 0], beat_gt, beat_tracker, FPS)
            for key in beat_acc_DBN:
                beat_DBN_meter.update(f'val-{dataset_key[0]}/{key}', beat_acc_DBN[key])

            
            #downbeat_acc = beat_accuracy(pred[:, :, 1], gt[:, :, 1], FPS/DS_RATIO)
            #if not dataset_key[0][0] == 'smc':
            #    for key in downbeat_acc:
            #        downbeat_meter.update(f'val-{dataset_key[0][0]}/{key}', downbeat_acc[key])

            downbeat_DBN_acc = infer_downbeat_with_DBN(pred[:, :, 0], pred[:, :, 1], downbeat_gt, downbeat_tracker, FPS)
            if not dataset_key[0] == 'smc':
                for key in downbeat_DBN_acc:
                    downbeat_DBN_meter.update(f'val-{dataset_key[0]}/{key}', downbeat_DBN_acc[key])


            if DEBUG_MODE:
                print('------------validation------------', flush=True)
                print('Epoch: [{0}][{1}/{2}]'.format(epoch+1, idx, num_batch), flush=True)
                print('val beat loss:', loss.item(), flush=True)
                print('train tempo loss:', loss_t.item(), flush=True)
                #print('val batch binary accuracy:', binary_acc.item(), flush=True)
                #print('beat accuracy:', list(beat_acc.values()), flush=True)
                print('beat accuracy with DBN:', list(beat_acc_DBN.values()), flush=True)
                #print('downbeat accuracy:', list(downbeat_acc.values()), flush=True)
                print('downbeat accuracy with DBN:', list(downbeat_DBN_acc.values()), flush=True)
            #except Exception as e:
            #    print(e)


        if not dataset_key[0] == 'gtzan':
            loss_writer.add_scalar('val/loss_beat', loss_meter_b.avg['val/loss'], epoch)
            loss_writer.add_scalar('val/loss_tempo', loss_meter_t.avg['val/loss'], epoch)
        else:
            loss_writer.add_scalar('val/loss_beat_nontrain', loss_meter_b.avg['val/loss_nontrain'], epoch)
            loss_writer.add_scalar('val/loss_tempo_nontrain', loss_meter_t.avg['val/loss_nontrain'], epoch)


        #for key in beat_meter.avg.keys():
        #    if 'val' in key:    
        #        beat_writer.add_scalar(key, beat_meter.avg[key], epoch)
        for key in beat_DBN_meter.avg.keys():
            if 'val' in key:    
                beat_DBN_writer.add_scalar(key, beat_DBN_meter.avg[key], epoch)
        #for key in downbeat_meter.avg.keys():
        #    if 'val' in key:    
        #        downbeat_writer.add_scalar(key, downbeat_meter.avg[key], epoch)
        for key in downbeat_DBN_meter.avg.keys():
            if 'val' in key:    
                downbeat_DBN_writer.add_scalar(key, downbeat_DBN_meter.avg[key], epoch)
    return loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter


for epoch in range(N_EPOCH):
    print(f'Start Epoch: {epoch + 1:02}', flush=True)
    start_time = time.time()

    model.train()
    _, _, _, _, _, _ = train(model, train_loader, optimizer, scheduler, loss_func, loss_tempo, CLIP, epoch, DEVICE)

    model.eval()
    #optimizer._backup_and_load_cache()
    loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter = evaluate(model, val_loader, loss_func, loss_tempo, epoch, DEVICE)
    #optimizer._clear_and_load_backup()

    scheduler.step(loss_meter_b.avg['val/loss'] + loss_meter_t.avg['val/loss'])

    #torch.save(model.state_dict(), os.path.join(MODEL_PATH, 'trf_param_'+str(epoch).zfill(3)+'.pt'))


    torch.save({ 'epoch': epoch,
    'state_dict': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'scheduler': scheduler.state_dict(),  
    }, os.path.join(MODEL_PATH, 'trf_param_'+str(epoch).zfill(3)+'.pt'))

    
    end_time = time.time()
    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    print(f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s', flush=True)

    print('val beat loss:', loss_meter_b.avg['val/loss'], flush=True)
    print('val tempo loss:', loss_meter_t.avg['val/loss'], flush=True)
    #print('beat accuracy:', [(key.split('/')[-1], beat_meter.avg[key]) for key in beat_meter.avg.keys() if 'val' in key], flush=True)
    print('beat accuracy with DBN:', [(key.split('/')[-1], beat_DBN_meter.avg[key]) for key in beat_DBN_meter.avg.keys() if 'val' in key], flush=True)
    #print('downbeat accuracy:', [(key.split('/')[-1], downbeat_meter.avg[key]) for key in downbeat_meter.avg.keys() if 'val' in key], flush=True)
    print('downbeat accuracy with DBN:', [(key.split('/')[-1], downbeat_DBN_meter.avg[key]) for key in downbeat_DBN_meter.avg.keys() if 'val' in key], flush=True)
    print('\n')