File size: 17,549 Bytes
659e74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
import sys
import time
import madmom
import torch
from tqdm import tqdm
from torch import nn
from torch import optim
from optimizer import Lookahead
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from utils import AverageMeter, epoch_time, infer_beat_with_DBN, infer_downbeat_with_DBN
from spectrogram_dataset import audioDataset
from DilatedTransformer import Demixed_DilatedTransformerModel
import warnings
warnings.filterwarnings('ignore')
DEBUG_MODE = int(sys.argv[1])
FOLD = int(sys.argv[2])
GPU = int(sys.argv[3])
PROJECT_NAME = 'Beat_Transformer'
###############################################################################
# Load config
###############################################################################
#data
SAMPLE_SIZE = int(44100 / 1024 * 180)
INSTR =5
FPS = 44100 / 1024
NUM_FOLDS = 8
#model
NORM_FIRST=True
ATTN_LEN=5
NTOKEN=2
DMODEL=256
NHEAD=8
DHID=1024
NLAYER=9
DROPOUT=.1
#training
DEVICE=f'cuda:{GPU}'
TRAIN_BATCH_SIZE = 1
LEARNING_RATE = 1e-3
DECAY = 0.99995
N_EPOCH = 30
CLIP=.5
#directories
DATASET_PATH = './data/demix_spectrogram_data.npz'
ANNOTATION_PATH = './data/full_beat_annotation.npz'
DATA_TO_LOAD = ['ballroom', 'ballroom', 'gtzan', 'hainsworth', 'smc', 'harmonix', 'carnetic']
TEST_ONLY = ['gtzan']
SAVE_PATH = f'./save/train_log/{str(GPU).zfill(2)}_{PROJECT_NAME}'
if DEBUG_MODE:
N_EPOCH = 1
TRAIN_BATCH_SIZE = 1
DECAY = 0.9995
DATA_TO_LOAD = ['hainsworth'] #hainsworth, smc
SAVE_PATH = os.path.join(SAVE_PATH, 'debug')
print(f'\nProject initialized: {PROJECT_NAME}\n', flush=True)
print(f'\nFold {FOLD}')
###############################################################################
# Initialize fold
###############################################################################
project_path = os.path.join(SAVE_PATH, f'Fold_{FOLD}')
MODEL_PATH = os.path.join(project_path, 'model')
LOG_PATH = os.path.join(project_path, 'log')
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH)
if not os.path.exists(LOG_PATH):
os.makedirs(LOG_PATH)
loss_writer = SummaryWriter(os.path.join(LOG_PATH, 'loss'))
#beat_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_acc'))
beat_ll_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_likelihood'))
downbeat_ll_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_likelihood'))
beat_pr_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_precision'))
downbeat_pr_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_precision'))
beat_DBN_writer = SummaryWriter(os.path.join(LOG_PATH, 'beat_DBN_acc'))
#downbeat_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_acc'))
downbeat_DBN_writer = SummaryWriter(os.path.join(LOG_PATH, 'downbeat_DBN_acc'))
###############################################################################
# model parameter
###############################################################################
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN,
instr=INSTR,
ntoken=NTOKEN,
dmodel=DMODEL,
nhead=NHEAD,
d_hid=DHID,
nlayers=NLAYER,
norm_first=NORM_FIRST,
dropout=DROPOUT
)
model.to(DEVICE)
###############################################################################
# load data
###############################################################################
dataset = audioDataset(data_to_load=DATA_TO_LOAD,
test_only_data = TEST_ONLY,
data_path = DATASET_PATH,
annotation_path = ANNOTATION_PATH,
fps = FPS,
sample_size = SAMPLE_SIZE,
num_folds = NUM_FOLDS)
# Fold Splitting
train_set, val_set, test_set = dataset.get_fold(fold=FOLD)
train_loader = DataLoader(train_set, batch_size=TRAIN_BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
#test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
###############################################################################
# Optimizer and Criterion
###############################################################################
optimizer = optim.RAdam(model.parameters(), lr=LEARNING_RATE)
optimizer = Lookahead(optimizer=optimizer, k=5, alpha=0.5)
#scheduler = MinExponentialLR(optimizer, gamma=DECAY, minimum=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=.2, patience=2, threshold=1e-3, min_lr=1e-7)
loss_func = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.LongTensor([1, 1]).to(DEVICE))
loss_tempo = nn.BCELoss(reduction='none')
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, transition_lambda=10, threshold=0.05)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, transition_lambda=10)
###############################################################################
# Main
###############################################################################
def train(model, train_loader, optimizer, scheduler, loss_func, loss_tempo, clip, epoch, device):
print('training ...', flush=True)
num_batch = len(train_loader)
loss_meter_b = AverageMeter()
loss_meter_t = AverageMeter()
beat_meter = AverageMeter()
beat_DBN_meter = AverageMeter()
downbeat_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
nan_count = []
for idx, (dataset_key, data, beat_gt, downbeat_gt, tempo_gt) in tqdm(enumerate(train_loader), total=num_batch):
#try:
#data
data = data.float().to(device)
#annotation
beat_gt = beat_gt.to(device)
downbeat_gt = downbeat_gt.to(device)
gt = torch.cat([beat_gt.unsqueeze(-1), downbeat_gt.unsqueeze(-1)], dim=-1).float().to(device) #(batch, T', 2)
tempo_gt = tempo_gt.to(device)
optimizer.zero_grad()
pred, tempo = model(data)
#print(pred.shape, gt.shape)
valid_gt = gt.clone()
valid_gt[gt == -1] = 0
loss = loss_func(pred, valid_gt)
weight = (1 - torch.as_tensor(gt == -1, dtype=torch.int32)).to(device)
loss = (weight * loss).mean(dim=(0, 1)).sum()
valid_tempo_gt = tempo_gt.clone()
valid_tempo_gt[tempo_gt == -1] = 0
loss_t = loss_tempo(torch.softmax(tempo, dim=-1), valid_tempo_gt)
weight = (1 - torch.as_tensor(tempo_gt == -1, dtype=torch.int32)).to(device)
loss_t = (weight * loss_t).mean()
#except RuntimeError:
# continue
loss_meter_t.update('train/loss', loss_t.item())
loss_meter_b.update('train/loss', loss.item())
if ((dataset_key[0] == 'musicnet') and (-1 in tempo_gt)):
loss = loss * 0 #do not trust musicnet beat annotation if tempo is none
#try:
loss = loss + loss_t
#except RuntimeError:
# continue
if torch.isnan(loss):
nan_count.append(str(dataset_key)+'\n')
with open('./home/zhaojw/workspace/efficient_dilated_MultiSpec_Transformer/nancount.txt', 'w') as f:
f.writelines(nan_count)
continue
#downbeat_loss = loss_func(downbeat_pred, downbeat_gt)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
#scheduler.step()
#binary_acc = binary_accuracy(pred[:, :, :2], gt[:, :, :2])
#loss_meter.update('train/loss', loss.item())
#loss_meter.update('train/binary_acc', binary_acc.item())
#beat_acc = beat_accuracy(pred[:, :, 0], gt[:, :, 0], FPS/DS_RATIO)
#for key in beat_acc:
# beat_meter.update('train/' + key, beat_acc[key])
#downbeat_acc = beat_accuracy(pred[:, :, 1], gt[:, :, 1], FPS/DS_RATIO)
#if not dataset_key[0] == 'smc':
# for key in downbeat_acc:
# downbeat_meter.update('train/' + key, downbeat_acc[key])
if DEBUG_MODE:
print('------------training------------', flush=True)
print('Epoch: [{0}][{1}/{2}]'.format(epoch+1, idx, num_batch), flush=True)
print('train beat loss:', loss.item()-loss_t.item(), flush=True)
print('train tempo loss:', loss_t.item(), flush=True)
#print('train binary batch accuracy', binary_acc.item(), flush=True)
#print('beat accuracy:', list(beat_acc.values()), flush=True)
#print('downbeat accuracy:', list(downbeat_acc.values()), flush=True)
loss_writer.add_scalar('train/loss_beat', loss_meter_b.avg['train/loss'], epoch * num_batch + idx)
loss_writer.add_scalar('train/loss_tempo', loss_meter_t.avg['train/loss'], epoch * num_batch + idx)
loss_writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], epoch * num_batch + idx)
#for key in beat_meter.avg.keys():
# if 'train' in key:
# beat_writer.add_scalar(key, beat_meter.avg[key], epoch * num_batch + idx)
#for key in beat_DBN_meter.avg.keys():
# if 'train' in key:
# beat_DBN_writer.add_scalar(key, beat_DBN_meter.avg[key], epoch * num_batch + idx)
#for key in downbeat_meter.avg.keys():
# if 'train' in key:
# downbeat_writer.add_scalar(key, downbeat_meter.avg[key], epoch * num_batch + idx)
#for key in downbeat_DBN_meter.avg.keys():
# if 'train' in key:
# downbeat_DBN_writer.add_scalar(key, downbeat_DBN_meter.avg[key], epoch * num_batch + idx)
return loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter
def evaluate(model, val_loader, loss_func, loss_tempo, epoch, device):
print('validating ...', flush=True)
num_batch = len(val_loader)
loss_meter_b = AverageMeter()
loss_meter_t = AverageMeter()
beat_meter = AverageMeter()
beat_DBN_meter = AverageMeter()
downbeat_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
with torch.no_grad():
for idx, (dataset_key, data, beat_gt, downbeat_gt, tempo_gt) in tqdm(enumerate(val_loader), total=num_batch):
#try:
#data
data = data.float().to(device)
#annotation
beat_gt = beat_gt.to(device)
downbeat_gt = downbeat_gt.to(device)
gt = torch.cat([beat_gt.unsqueeze(-1), downbeat_gt.unsqueeze(-1)], dim=-1).float().to(device) #(batch, T', 2)
#tempo_gt = tempo_gt.reshape(-1).long().to(device)
tempo_gt = tempo_gt.float().to(device)
pred, tempo = model(data)
valid_gt = gt.clone()
valid_gt[gt == -1] = 0
loss = loss_func(pred, valid_gt)
weight = (1 - torch.as_tensor(gt == -1, dtype=torch.int32)).to(device)
loss = (weight * loss).mean(dim=(0, 1)).sum()
valid_tempo_gt = tempo_gt.clone()
valid_tempo_gt[tempo_gt == -1] = 0
loss_t = loss_tempo(torch.softmax(tempo, dim=-1), valid_tempo_gt)
weight = (1 - torch.as_tensor(tempo_gt == -1, dtype=torch.int32)).to(device)
loss_t = (weight * loss_t).mean()
#except RuntimeError:
# continue
if not dataset_key[0] == 'gtzan':
loss_meter_b.update('val/loss', loss.item())
else:
loss_meter_b.update('val/loss_nontrain', loss.item())
if not dataset_key[0] == 'gtzan':
loss_meter_t.update('val/loss', loss_t.item())
else:
loss_meter_t.update('val/loss_nontrain', loss_t.item())
#binary_acc = binary_accuracy(pred[:, :, :2], gt[:, :, :2])
#if not dataset_key[0][0] == 'gtzan':
# loss_meter.update('val/loss', loss.item())
# loss_meter.update('val/binary_acc', binary_acc.item())
#else:
# loss_meter.update('val/loss_nontrain', loss.item())
# loss_meter.update('val/binary_acc_nontrain', binary_acc.item())
#try:
#beat_acc = beat_accuracy(pred[:, :, 0], gt[:, :, 0], FPS/DS_RATIO)
#for key in beat_acc:
# beat_meter.update(f'val-{dataset_key[0][0]}/{key}', beat_acc[key])
beat_acc_DBN = infer_beat_with_DBN(pred[:, :, 0], beat_gt, beat_tracker, FPS)
for key in beat_acc_DBN:
beat_DBN_meter.update(f'val-{dataset_key[0]}/{key}', beat_acc_DBN[key])
#downbeat_acc = beat_accuracy(pred[:, :, 1], gt[:, :, 1], FPS/DS_RATIO)
#if not dataset_key[0][0] == 'smc':
# for key in downbeat_acc:
# downbeat_meter.update(f'val-{dataset_key[0][0]}/{key}', downbeat_acc[key])
downbeat_DBN_acc = infer_downbeat_with_DBN(pred[:, :, 0], pred[:, :, 1], downbeat_gt, downbeat_tracker, FPS)
if not dataset_key[0] == 'smc':
for key in downbeat_DBN_acc:
downbeat_DBN_meter.update(f'val-{dataset_key[0]}/{key}', downbeat_DBN_acc[key])
if DEBUG_MODE:
print('------------validation------------', flush=True)
print('Epoch: [{0}][{1}/{2}]'.format(epoch+1, idx, num_batch), flush=True)
print('val beat loss:', loss.item(), flush=True)
print('train tempo loss:', loss_t.item(), flush=True)
#print('val batch binary accuracy:', binary_acc.item(), flush=True)
#print('beat accuracy:', list(beat_acc.values()), flush=True)
print('beat accuracy with DBN:', list(beat_acc_DBN.values()), flush=True)
#print('downbeat accuracy:', list(downbeat_acc.values()), flush=True)
print('downbeat accuracy with DBN:', list(downbeat_DBN_acc.values()), flush=True)
#except Exception as e:
# print(e)
if not dataset_key[0] == 'gtzan':
loss_writer.add_scalar('val/loss_beat', loss_meter_b.avg['val/loss'], epoch)
loss_writer.add_scalar('val/loss_tempo', loss_meter_t.avg['val/loss'], epoch)
else:
loss_writer.add_scalar('val/loss_beat_nontrain', loss_meter_b.avg['val/loss_nontrain'], epoch)
loss_writer.add_scalar('val/loss_tempo_nontrain', loss_meter_t.avg['val/loss_nontrain'], epoch)
#for key in beat_meter.avg.keys():
# if 'val' in key:
# beat_writer.add_scalar(key, beat_meter.avg[key], epoch)
for key in beat_DBN_meter.avg.keys():
if 'val' in key:
beat_DBN_writer.add_scalar(key, beat_DBN_meter.avg[key], epoch)
#for key in downbeat_meter.avg.keys():
# if 'val' in key:
# downbeat_writer.add_scalar(key, downbeat_meter.avg[key], epoch)
for key in downbeat_DBN_meter.avg.keys():
if 'val' in key:
downbeat_DBN_writer.add_scalar(key, downbeat_DBN_meter.avg[key], epoch)
return loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter
for epoch in range(N_EPOCH):
print(f'Start Epoch: {epoch + 1:02}', flush=True)
start_time = time.time()
model.train()
_, _, _, _, _, _ = train(model, train_loader, optimizer, scheduler, loss_func, loss_tempo, CLIP, epoch, DEVICE)
model.eval()
#optimizer._backup_and_load_cache()
loss_meter_b, loss_meter_t, beat_meter, beat_DBN_meter, downbeat_meter, downbeat_DBN_meter = evaluate(model, val_loader, loss_func, loss_tempo, epoch, DEVICE)
#optimizer._clear_and_load_backup()
scheduler.step(loss_meter_b.avg['val/loss'] + loss_meter_t.avg['val/loss'])
#torch.save(model.state_dict(), os.path.join(MODEL_PATH, 'trf_param_'+str(epoch).zfill(3)+'.pt'))
torch.save({ 'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}, os.path.join(MODEL_PATH, 'trf_param_'+str(epoch).zfill(3)+'.pt'))
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print(f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s', flush=True)
print('val beat loss:', loss_meter_b.avg['val/loss'], flush=True)
print('val tempo loss:', loss_meter_t.avg['val/loss'], flush=True)
#print('beat accuracy:', [(key.split('/')[-1], beat_meter.avg[key]) for key in beat_meter.avg.keys() if 'val' in key], flush=True)
print('beat accuracy with DBN:', [(key.split('/')[-1], beat_DBN_meter.avg[key]) for key in beat_DBN_meter.avg.keys() if 'val' in key], flush=True)
#print('downbeat accuracy:', [(key.split('/')[-1], downbeat_meter.avg[key]) for key in downbeat_meter.avg.keys() if 'val' in key], flush=True)
print('downbeat accuracy with DBN:', [(key.split('/')[-1], downbeat_DBN_meter.avg[key]) for key in downbeat_DBN_meter.avg.keys() if 'val' in key], flush=True)
print('\n')
|