File size: 11,701 Bytes
659e74f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import numpy as np
import json, sys, os
from torch import nn
import torch
from torch.distributions import kl_divergence, Normal
from torch.optim.lr_scheduler import ExponentialLR
import random
import madmom
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = {}
self.avg = {}
self.sum = {}
self.count = {}
def update(self, key, val, n=1):
if not key in self.val:
self.val[key] = val
self.sum[key] = val * n
self.count[key] = n
self.avg[key] = self.sum[key] / self.count[key]
else:
self.val[key] = val
self.sum[key] += val * n
self.count[key] += n
self.avg[key] = self.sum[key] / self.count[key]
def binary_accuracy(beat_pred, beat_gt):
#beat: (B, T)
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = torch.as_tensor((torch.sigmoid(beat_pred) >= 0.5), dtype=torch.int32)
beat_gt = torch.as_tensor((beat_gt > 0.6), dtype=torch.int32)
positives = torch.as_tensor((beat_pred == beat_gt), dtype=torch.int32)
positives = positives * weight
binary_accuracy = positives.sum() / (weight.sum() + 1e-4)
return binary_accuracy
def beat_accuracy(beat_pred, beat_gt, fps):
#beat_pred: (B, L), estimation result
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = torch.sigmoid(beat_pred) * weight
beat_pred = torch.as_tensor((beat_pred - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
#beat_pred = (beat_pred / fps)
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
#beat_gt = (beat_gt / fps)
#print(beat_gt)
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
beat_pred_batch = np.nonzero(beat_pred[idx])[0] / fps
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
#print(beat_gt_batch)
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt}
def infer_beat_with_DBN(beat_pred, beat_gt, dbn_model, fps):
#beat_pred: (B, L), estimation result
weight = (1 - torch.as_tensor(beat_gt == -1, dtype=torch.int32))
beat_pred = (torch.sigmoid(beat_pred) * weight).detach().cpu().numpy()
#beat_pred = (beat_pred / fps)
beat_gt = torch.as_tensor((beat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
try:
beat_pred_batch = dbn_model(beat_pred[idx])
except:
return {"fmeasure": 0, "cmlt": 0, "amlt": 0}
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0}
def infer_downbeat_with_DBN(beat_pred, downbeat_pred, downbeat_gt, dbn_model, fps):
#beat_pred: (B, L), estimation result
beat_pred = torch.sigmoid(beat_pred).detach().cpu()
downbeat_pred = torch.sigmoid(downbeat_pred).detach().cpu()
combined_act = torch.cat((torch.maximum(beat_pred - downbeat_pred, torch.zeros(beat_pred.shape)).unsqueeze(-1), downbeat_pred.unsqueeze(-1)), dim=-1)
#beat_pred = (beat_pred / fps)
weight = (1 - torch.as_tensor(downbeat_gt == -1, dtype=torch.int32)).unsqueeze(-1).detach().cpu()
combined_act = (combined_act * weight).numpy()
beat_gt = torch.as_tensor((downbeat_gt - 0.5) > 0, dtype=torch.int32).detach().cpu().numpy()
batch_score = []
for idx in range(beat_pred.shape[0]):
#if (beat_gt[idx] == 0).all():
# continue
if np.sum(beat_gt[idx]) < 2:
continue
try:
beat_pred_batch = dbn_model(combined_act[idx])
beat_pred_batch = beat_pred_batch[beat_pred_batch[:, 1]==1][:, 0]
except:
return {"fmeasure": 0, "cmlt": 0, "amlt": 0}
beat_gt_batch = np.nonzero(beat_gt[idx])[0] / fps
score = madmom.evaluation.beats.BeatEvaluation(beat_pred_batch, beat_gt_batch)
batch_score.append(score)
batch_score = madmom.evaluation.beats.BeatMeanEvaluation(batch_score)
return {"fmeasure": batch_score.fmeasure if not np.isnan(batch_score.fmeasure) else 0, \
#"cemgil": batch_score.cemgil, \
#"cmlc": batch_score.cmlc, \
"cmlt": batch_score.cmlt if not np.isnan(batch_score.cmlt) else 0, \
#"amlc": batch_score.amlc, \
"amlt": batch_score.amlt if not np.isnan(batch_score.amlt) else 0}
def load_dataset_path(fn='model_config.json'):
with open(fn) as f:
paths = json.load(f)['dataset_path']
train_val_path = paths['hpc_data_path']
return train_val_path
def load_params_dict(key, fn='model_config.json'):
with open(fn) as f:
dict = json.load(f)[key]
return dict
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def init_weights(m):
for name, param in m.named_parameters():
if 'weight' in name:
nn.init.normal_(param.data, mean=0, std=0.01)
else:
nn.init.constant_(param.data, 0)
def standard_normal(shape):
N = Normal(torch.zeros(shape), torch.ones(shape))
if torch.cuda.is_available():
N.loc = N.loc.cuda()
N.scale = N.scale.cuda()
return N
def loss_function_vae(recon_pitch, pitch, dist, pitch_criterion, normal,
weights=(1, .1)):
# bs = dist.mean.size(0)
#print(recon_pitch.shape, pitch.shape, recon_rhythm.shape, rhythm.shape)
pitch_loss = pitch_criterion(recon_pitch, pitch)
kl_div = kl_divergence(dist, normal).mean()
loss = weights[0] * pitch_loss + weights[1] * kl_div
return loss, pitch_loss, kl_div
def loss_function_discr(recon_mask, mask_gt, dist, mask_criterion, normal,
weights=(1, .1)):
# bs = dist.mean.size(0)
#print(recon_pitch.shape, pitch.shape, recon_rhythm.shape, rhythm.shape)
mask_loss = mask_criterion(recon_mask, mask_gt)
kl_div = kl_divergence(dist, normal).mean()
loss = weights[0] * mask_loss + weights[1] * kl_div
return loss, mask_loss, kl_div
def get_complement(mask_gt):
#mask_gt: (BT, 128)
complement = torch.zeros(mask_gt.shape).long().cuda()
for i in range(mask_gt.shape[0]):
if random.random() < 0.5:
low = max(mask_gt[i].max(0)[-1].item() - 5, 0)
high = min(mask_gt[i].max(0)[-1].item() + 6, 127)
else:
low = max(mask_gt[i].max(0)[-1].item() - 6, 0)
high = min(mask_gt[i].max(0)[-1].item() + 5, 127)
#print(low, high)
complement[i, low: high+1] = 1.
return complement - mask_gt
# Useful function for how long epochs take
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
class MinExponentialLR(ExponentialLR):
def __init__(self, optimizer, gamma, minimum, last_epoch=-1):
self.min = minimum
super(MinExponentialLR, self).__init__(optimizer, gamma, last_epoch=-1)
def get_lr(self):
return [
max(base_lr * self.gamma ** self.last_epoch, self.min)
for base_lr in self.base_lrs
]
def scheduled_sampling(i, high=0.7, low=0.05):
x = 10 * (i - 0.5)
z = 1 / (1 + np.exp(x))
y = (high - low) * z + low
return y
def piano_roll_to_target(pr):
# pr: (32, 128, 3), dtype=bool
# Assume that "not (first_layer or second layer) = third_layer"
pr[:, :, 1] = np.logical_not(np.logical_or(pr[:, :, 0], pr[:, :, 2]))
# To int dtype can make addition work
pr = pr.astype(int)
# Initialize a matrix to store the duration of a note on the (32, 128) grid
pr_matrix = np.zeros((32, 128))
for i in range(31, -1, -1):
# At each iteration
# 1. Assure that the second layer accumulates the note duration
# 2. collect the onset notes in time step i, and mark it on the matrix.
# collect
onset_idx = np.where(pr[i, :, 0] == 1)[0]
pr_matrix[i, onset_idx] = pr[i, onset_idx, 1] + 1
if i == 0:
break
# Accumulate
# pr[i - 1, :, 1] += pr[i, :, 1]
# pr[i - 1, onset_idx, 1] = 0 # the onset note should be set 0.
pr[i, onset_idx, 1] = 0 # the onset note should be set 0.
pr[i - 1, :, 1] += pr[i, :, 1]
return pr_matrix
def target_to_3dtarget(pr_mat, max_note_count=11, max_pitch=107, min_pitch=22,
pitch_pad_ind=88, dur_pad_ind=2,
pitch_sos_ind=86, pitch_eos_ind=87):
"""
:param pr_mat: (32, 128) matrix. pr_mat[t, p] indicates a note of pitch p,
started at time step t, has a duration of pr_mat[t, p] time steps.
:param max_note_count: the maximum number of notes in a time step,
including <sos> and <eos> tokens.
:param max_pitch: the highest pitch in the dataset.
:param min_pitch: the lowest pitch in the dataset.
:param pitch_pad_ind: see return value.
:param dur_pad_ind: see return value.
:param pitch_sos_ind: sos token.
:param pitch_eos_ind: eos token.
:return: pr_mat3d is a (32, max_note_count, 6) matrix. In the last dim,
the 0th column is for pitch, 1: 6 is for duration in binary repr. Output is
padded with <sos> and <eos> tokens in the pitch column, but with pad token
for dur columns.
"""
pitch_range = max_pitch - min_pitch + 1 # including pad
pr_mat3d = np.ones((32, max_note_count, 6), dtype=int) * dur_pad_ind
pr_mat3d[:, :, 0] = pitch_pad_ind
pr_mat3d[:, 0, 0] = pitch_sos_ind
cur_idx = np.ones(32, dtype=int)
for t, p in zip(*np.where(pr_mat != 0)):
pr_mat3d[t, cur_idx[t], 0] = p - min_pitch
binary = np.binary_repr(int(pr_mat[t, p]) - 1, width=5)
pr_mat3d[t, cur_idx[t], 1: 6] = \
np.fromstring(' '.join(list(binary)), dtype=int, sep=' ')
cur_idx[t] += 1
pr_mat3d[np.arange(0, 32), cur_idx, 0] = pitch_eos_ind
return pr_mat3d
def get_low_high_dur_count(pr_mat):
# pr_mat (32, 128)
# return the maximum duration
# return the pitch range
# return the number of notes at each column
pitch_range = np.where(pr_mat != 0)[1]
low_pitch = pitch_range.min()
high_pitch = pitch_range.max()
pitch_dur = pr_mat.max()
num_notes = np.count_nonzero(pr_mat, axis=-1)
return low_pitch, high_pitch, pitch_dur, num_notes
|