cmi / Beat-Transformer /code /ablation_models /non_demix_spectrogram_dataset.py
nicolaus625's picture
Add files using upload-large-folder tool
659e74f verified
raw
history blame
19.7 kB
import os
import time
import madmom
import torch
import librosa
import numpy as np
from torch.utils.data import Dataset
from scipy.ndimage import maximum_filter1d
from tqdm import tqdm
from matplotlib import pyplot as plt
import librosa.display
from scipy.interpolate import interp1d
from scipy.signal import argrelmax
class dataset_processing(Dataset):
def __init__(self, full_data,
full_annotation,
audio_files,
mode='train',
fold=0,
fps=44100/1024,
sample_size = 512,
num_folds=8,
mask_value=-1,
test_only = []
):
self.fold = fold
self.num_folds = num_folds
self.fps = fps
self.mode = mode
self.sample_size = sample_size
self.MASK_VALUE = mask_value
self.data = []
self.beats = []
self.downbeats = []
self.tempi = []
self.root = []
if self.mode == 'train':
self.dataset_name = []
self.train_clip(full_data, full_annotation, test_only=test_only)
elif self.mode == 'validation' or self.mode == 'test':
self.dataset_name = []
self.audio_files = []
self.val_and_test_clip(full_data, full_annotation, audio_files, test_only=test_only)
full_data = None
full_annotation = None
def train_clip(self, full_data, full_annotation, num_tempo_bins=300, test_only=[]):
for fold_idx in tqdm(range(self.num_folds)):
if (fold_idx != self.fold) and (fold_idx != (self.fold+1)%self.num_folds):
for key in full_data:
if key == test_only:
continue
#print(f'processing {key} under fold {fold_idx}')
for song_idx in range(len(full_data[key][fold_idx])):
song = full_data[key][fold_idx][song_idx] #(t, 5, mel)
annotation = full_annotation[key][fold_idx][song_idx]
try:
#print(annotation, annotation.shape)
if len(annotation.shape) == 2:
beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
else:
beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
except:
beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
print(f'beat load error at {key} dataset, skip it')
try:
downbeat = annotation[annotation[:, 1] == 1][:, 0]
downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
except:
downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
if not ((key == 'smc') or (key == 'musicnet')):
print(f'downbeat load error at {key} dataset, skip it')
try:
#tempo = self.infer_tempo(annotation[:, 0])
#tempo = np.array([int(np.round(tempo))])
tempo = np.zeros(num_tempo_bins, dtype='float32')
if len(annotation.shape) == 2:
tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
else:
tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = tempo/sum(tempo)
#tempo += np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.25)
except:
#tempo = np.array([self.MASK_VALUE])
tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
if self.sample_size is None:
self.dataset_name.append(key)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
if len(song) <= self.sample_size:
self.dataset_name.append(key)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
for i in range(0, len(song)-self.sample_size+1, self.sample_size):
self.dataset_name.append(key)
self.data.append(song[i: i+self.sample_size])
self.beats.append(beat[i: i+self.sample_size])
self.downbeats.append(downbeat[i: i+self.sample_size])
self.tempi.append(tempo)
if i + self.sample_size < len(song):
self.dataset_name.append(key)
self.data.append(song[len(song)-self.sample_size:])
self.beats.append(beat[len(song)-self.sample_size:])
self.downbeats.append(downbeat[len(song)-self.sample_size:])
self.tempi.append(tempo)
#print(len(self.data), len(self.beats), len(self.downbeats))
def val_and_test_clip(self, full_data, full_annotation, audio_files, num_tempo_bins=300, test_only=[]):
if self.mode == 'validation':
fold_idx = (self.fold+1)%self.num_folds
elif self.mode == 'test':
fold_idx = self.fold
for key in tqdm(full_data, total=len(full_data)):
#print(f'processing {key}')
if ((self.mode == 'validation') and (key in test_only)):
continue
for song_idx in range(len(full_data[key][fold_idx])):
song = full_data[key][fold_idx][song_idx]
annotation = full_annotation[key][fold_idx][song_idx]
audio_file = audio_files[key][fold_idx][song_idx]
try:
if len(annotation.shape) == 2:
beat = madmom.utils.quantize_events(annotation[:, 0], fps=self.fps, length=len(song))
else:
beat = madmom.utils.quantize_events(annotation[:], fps=self.fps, length=len(song))
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
beat = np.maximum(beat, maximum_filter1d(beat, size=3) * 0.5)
except:
beat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
print(f'beat load error at {key} dataset, skip it')
try:
downbeat = annotation[annotation[:, 1] == 1][:, 0]
downbeat = madmom.utils.quantize_events(downbeat, fps=self.fps, length=len(song))
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
downbeat = np.maximum(downbeat, maximum_filter1d(downbeat, size=3) * 0.5)
except:
downbeat = np.ones(len(song), dtype='float32') * self.MASK_VALUE
if not ((key == 'smc') or (key == 'musicnet')):
print(f'downbeat load error at {key} dataset, skip it')
try:
#tempo = self.infer_tempo(annotation[:, 0])
#tempo = np.array([int(np.round(tempo))])
tempo = np.zeros(num_tempo_bins, dtype='float32')
if len(annotation.shape) == 2:
tempo[int(np.round(self.infer_tempo(annotation[:, 0])))] = 1
else:
tempo[int(np.round(self.infer_tempo(annotation[:])))] = 1
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = np.maximum(tempo, maximum_filter1d(tempo, size=3) * 0.5)
tempo = tempo/sum(tempo)
except:
#tempo = np.array([self.MASK_VALUE])
tempo = np.ones(num_tempo_bins, dtype='float32') * self.MASK_VALUE
if self.sample_size is None:
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
eval_sample_size = int(44100/1024 * 420)
if len(song) <= eval_sample_size:
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song)
self.beats.append(beat)
self.downbeats.append(downbeat)
self.tempi.append(tempo)
else:
for i in range(0, len(song)-eval_sample_size+1, eval_sample_size):
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song[i: i+eval_sample_size])
self.beats.append(beat[i: i+eval_sample_size])
self.downbeats.append(downbeat[i: i+eval_sample_size])
self.tempi.append(tempo)
if i + eval_sample_size < len(song):
self.dataset_name.append(key)
self.root.append(audio_file)
self.data.append(song[len(song)-eval_sample_size:])
self.beats.append(beat[len(song)-eval_sample_size:])
self.downbeats.append(downbeat[len(song)-eval_sample_size:])
self.tempi.append(tempo)
def infer_tempo(self, beats, hist_smooth=4, no_tempo=-1):
ibis = np.diff(beats) * self.fps
bins = np.bincount(np.round(ibis).astype(int))
# if no beats are present, there is no tempo
if not bins.any():
return no_tempo
# smooth histogram bins
if hist_smooth > 0:
bins = madmom.audio.signal.smooth(bins, hist_smooth)
#print(bins)
intervals = np.arange(len(bins))
# create interpolation function
interpolation_fn = interp1d(intervals, bins, 'quadratic')
# generate new intervals with 1000x the resolution
intervals = np.arange(intervals[0], intervals[-1], 0.001)
tempi = 60.0 * self.fps / intervals
# apply quadratic interpolation
bins = interpolation_fn(intervals)
peaks = argrelmax(bins, mode='wrap')[0]
if len(peaks) == 0:
# no peaks, no tempo
return no_tempo
else:
# report only the strongest tempo
sorted_peaks = peaks[np.argsort(bins[peaks])[::-1]]
return tempi[sorted_peaks][0]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x = np.sum(self.data[index], axis=1).transpose(1, 0) #(dmodel, T)
x = librosa.power_to_db(x, ref=np.max)
x = x.T
return self.dataset_name[index], x, self.beats[index], self.downbeats[index], self.tempi[index], self.root[index]
class audioDataset(object):
def __init__(self, data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix'],
test_only_data = ['hainsworth'],
data_path="/data1/zhaojw/dataset/linear_spectrogram_data.npz",
annotation_path="/data1/zhaojw/dataset/beat_annotation.npz",
fps=44100/1024,
SEED = 0,
num_folds=8,
mask_value = -1,
sample_size = 512
):
self.fps = fps
self.sample_size = sample_size
self.mask_value = mask_value
self.num_folds = num_folds
self.test_only_data = test_only_data
load_linear_spectr = np.load(data_path, allow_pickle=True)
load_annotation = np.load(annotation_path, allow_pickle=True)
self.full_data = {}
self.full_annotation = {}
self.audio_files = {}
for key in load_linear_spectr:
if key in data_to_load:
time1 = time.time()
print(f'loading {key} dataset ...')
data = load_linear_spectr[key]
annotation = load_annotation[key]
assert(len(data) == len(annotation))
with open(f'./data/audio_lists/{key}.txt', 'r') as f:
audio_root = f.readlines()
audio_root = [item.replace('\n', '') for item in audio_root]
assert(len(data) == len(audio_root))
print(f'finish loading {key} with shape {data.shape}, using {time.time()-time1}s.')
#fold split
self.full_data[key] = {}
self.full_annotation[key] = {}
self.audio_files[key] = {}
if key in self.test_only_data:
FOLD_SIZE = len(data) // num_folds
np.random.seed(SEED)
np.random.shuffle(data)
np.random.seed(SEED)
np.random.shuffle(annotation)
np.random.seed(SEED)
np.random.shuffle(audio_root)
for i in range(num_folds):
self.full_data[key][i] = data[:]
self.full_annotation[key][i] = annotation[:]
self.audio_files[key][i] = audio_root[:]
else:
FOLD_SIZE = len(data) // num_folds
np.random.seed(SEED)
np.random.shuffle(data)
np.random.seed(SEED)
np.random.shuffle(annotation)
np.random.seed(SEED)
np.random.shuffle(audio_root)
for i in range(num_folds-1):
self.full_data[key][i] = data[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.full_annotation[key][i] = annotation[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.audio_files[key][i] = audio_root[i*FOLD_SIZE: (i+1)*FOLD_SIZE]
self.full_data[key][num_folds-1] = data[(num_folds-1)*FOLD_SIZE: len(data)]
self.full_annotation[key][num_folds-1] = annotation[(num_folds-1)*FOLD_SIZE: len(annotation)]
self.audio_files[key][num_folds-1] = audio_root[(num_folds-1)*FOLD_SIZE: len(audio_root)]
data = None
annotation = None
def get_fold(self, fold=0):
print('processing train_set')
train_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=None,
mode='train',
fps=self.fps,
fold=fold,
sample_size = self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
print('processing val_set')
val_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=self.audio_files,
mode='validation',
fps=self.fps,
fold=fold,
sample_size=self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
print('processing test_set')
test_set = dataset_processing(full_data=self.full_data,
full_annotation=self.full_annotation,
audio_files=self.audio_files,
mode='test',
fps=self.fps,
fold=fold,
sample_size=self.sample_size,
num_folds=self.num_folds,
mask_value=self.mask_value,
test_only=self.test_only_data
)
return train_set, val_set, test_set
if __name__ == '__main__':
from torch.utils.data import DataLoader
#data_to_load=['ballroom', 'carnetic', 'gtzan', 'hainsworth', 'smc', 'harmonix']
dataset = audioDataset(data_to_load=['smc'],
test_only_data = ['gtzan'],
data_path = "./data/demix_spectrogram_data.npz",
annotation_path = "./data/full_beat_annotation.npz",
fps = 44100/1024,
sample_size = None,
num_folds = 8)
# Fold Splitting
train_set, val_set, test_set = dataset.get_fold(fold=0)
#train_loader = DataLoader(train_set, batch_size=1, shuffle=True)
#val_loader = DataLoader(val_set, batch_size=1, shuffle=False)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
#for i, (key, data, beat, downbeat, tempo) in enumerate(val_data):
for i, (key, data, beat, downbeat, tempo, root) in enumerate(test_loader):
print('key:', key)
print('data:', data.shape)
print('beat:', beat.shape)
#print('beat:', torch.nonzero(beat))
print('downbeat:', downbeat.shape)
print('tempo:', tempo.shape)
print('audio_root:', root)
#print('downbeat:', torch.nonzero(downbeat))
break