nicolaus625's picture
Add files using upload-large-folder tool
659e74f verified
raw
history blame
6.97 kB
import torch
from torch import nn
from music_transformer import TransformerEncoderLayer
import torch.nn.functional as F
import math
import sys
from tcn import residual_block
class DemixedTCN(nn.Module):
def __init__(self, attn_len=5, instr=5, ntoken=2, dmodel=128, nhead=2, d_hid=512, nlayers=9, norm_first=True, dropout=.1):
super(DemixedTCN, self).__init__()
self.nhead = nhead
self.nlayers = nlayers
self.attn_len = attn_len
self.head_dim = dmodel // nhead
self.dmodel = dmodel
assert self.head_dim * nhead == dmodel, "embed_dim must be divisible by num_heads"
#self.Er = nn.Parameter(torch.randn(nhead, self.head_dim, attn_len))
#instr_pe = self.generate_instr_pe(ninstr, dmodel)
#self.register_buffer('instr_pe', instr_pe)
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 3), stride=1, padding=(2, 0))#126
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#42
self.dropout1 = nn.Dropout(p=dropout)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0))#31
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#10
self.dropout2 = nn.Dropout(p=dropout)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 6), stride=1, padding=(1, 0))#5
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3))#1
self.dropout3 = nn.Dropout(p=dropout)
self.head_er = nn.Parameter(torch.randn(nhead, self.head_dim, 1))
self.Transformer_layers = nn.ModuleDict({})
for idx in range(nlayers):
#self.Transformer_layers[f'time_attention_{idx}'] = DilatedTransformerLayer(dmodel, nhead, d_hid, dropout, Er_provided=False, attn_len=attn_len, norm_first=norm_first)
self.Transformer_layers[f'time_attention_{idx}'] = residual_block(2**idx, dmodel, dmodel, attn_len, dropout)
if (idx >= 3) and (idx <= 5):
self.Transformer_layers[f'instr_attention_{idx}'] = TransformerEncoderLayer(dmodel, nhead, d_hid, dropout, Er_provided=False, max_len=instr, norm_first=norm_first)
self.out_linear = nn.Linear(dmodel, ntoken)
self.dropout_t = nn.Dropout(p=.5)
self.out_linear_t = nn.Linear(dmodel, 300)
def forward(self, x):
#x: (batch, instr, time, dmodel), FloatTensor
#batch, time, dmodel = x.shape
batch, instr, time, melbin = x.shape
x = x.reshape(-1, 1, time, melbin)
x = self.conv1(x)
x = self.maxpool1(x)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = torch.relu(x)
x = self.dropout2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = torch.relu(x)
x = self.dropout3(x) #(batch*instr, channel, time, 1)
x = x.reshape(-1, self.dmodel, time).transpose(1, 2) #(batch*instr, time, channel=dmodel)
t = []
for layer in range(self.nlayers):
x = x.transpose(-1, -2)
x, skip = self.Transformer_layers[f'time_attention_{layer}'](x)
x = x.transpose(-1, -2)
skip = skip.transpose(-1, -2).reshape(batch, instr, time, self.dmodel)
#skip = skip.reshape(batch, instr, time, self.dmodel)
t.append(skip.mean(1))
if (layer >= 3) and (layer <= 5):
x = x.reshape(batch, instr, time, self.dmodel)
x = x.permute(0, 2, 1, 3)
x = x.reshape(-1, instr, self.dmodel)
#x = self.Transformer_layers[f'instr_attention_{layer}'](x, layer=layer)
x = self.Transformer_layers[f'instr_attention_{layer}'](x)
x = x.reshape(batch, time, instr, self.dmodel)
x = x.permute(0, 2, 1, 3)
x = x.reshape(-1, time, self.dmodel)
x = torch.relu(x)
x = x.reshape(batch, instr, time, self.dmodel)
x = x.mean(1)
x = self.out_linear(x)
t = torch.stack(t, axis=-1).sum(dim=-1)
t = torch.relu(t)
t = self.dropout_t(t)
t = t.mean(dim=1) #(batch, dmodel)
t = self.out_linear_t(t)
return x, t
def inference(self, x):
#x: (batch, instr, time, dmodel), FloatTensor
#batch, time, dmodel = x.shape
batch, instr, time, melbin = x.shape
x = x.reshape(-1, 1, time, melbin)
x = self.conv1(x)
x = self.maxpool1(x)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = torch.relu(x)
x = self.dropout2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = torch.relu(x)
x = self.dropout3(x) #(batch*instr, channel, time, 1)
x = x.reshape(-1, self.dmodel, time).transpose(1, 2) #(batch*instr, time, channel=dmodel)
t = []
attn = [torch.eye(time, device=x.device).repeat(batch, self.nhead, 1, 1)]
for layer in range(self.nlayers):
x, skip, layer_attn = self.Transformer_layers[f'time_attention_{layer}'].inference(x, layer=layer, head_er=self.head_er)
skip = skip.reshape(batch, instr, time, self.dmodel)
t.append(skip.mean(1))
attn.append(torch.matmul(attn[-1], layer_attn.transpose(-2, -1)))
if (layer >= 3) and (layer <= 5):
x = x.reshape(batch, instr, time, self.dmodel)
x = x.permute(0, 2, 1, 3)
x = x.reshape(-1, instr, self.dmodel)
#x = self.Transformer_layers[f'instr_attention_{layer}'](x, layer=layer)
x = self.Transformer_layers[f'instr_attention_{layer}'](x)
x = x.reshape(batch, time, instr, self.dmodel)
x = x.permute(0, 2, 1, 3)
x = x.reshape(-1, time, self.dmodel)
x = torch.relu(x)
x = x.reshape(batch, instr, time, self.dmodel)
x = x.mean(1)
x = self.out_linear(x)
t = torch.stack(t, axis=-1).sum(dim=-1)
t = torch.relu(t)
t = self.dropout_t(t)
t = t.mean(dim=1) #(batch, dmodel)
t = self.out_linear_t(t)
return x, t, attn
if __name__ == '__main__':
from spectrogram_dataset import audioDataset
from torch.utils.data import DataLoader
DEVICE = 'cpu'
model = DemixedTCN(attn_len=5, instr=5, ntoken=2, dmodel=256, nhead=8, d_hid=1024, nlayers=9, norm_first=True, dropout=.1)
model.to(DEVICE)
model.eval()
for name, param in model.state_dict().items():
print(name, param.shape)
# name: str
# param: Tensor
total = sum([param.nelement() for param in model.parameters()])
print(total)
#print("Number of parameter: %.2fM" % (total/1e6))