|
import torch |
|
from torch import nn |
|
from music_transformer import TransformerEncoderLayer |
|
import torch.nn.functional as F |
|
import math |
|
import sys |
|
|
|
from tcn import residual_block |
|
|
|
|
|
class DemixedTCN(nn.Module): |
|
def __init__(self, attn_len=5, instr=5, ntoken=2, dmodel=128, nhead=2, d_hid=512, nlayers=9, norm_first=True, dropout=.1): |
|
super(DemixedTCN, self).__init__() |
|
self.nhead = nhead |
|
self.nlayers = nlayers |
|
self.attn_len = attn_len |
|
self.head_dim = dmodel // nhead |
|
self.dmodel = dmodel |
|
assert self.head_dim * nhead == dmodel, "embed_dim must be divisible by num_heads" |
|
|
|
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(5, 3), stride=1, padding=(2, 0)) |
|
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) |
|
self.dropout1 = nn.Dropout(p=dropout) |
|
|
|
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(1, 12), stride=1, padding=(0, 0)) |
|
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) |
|
self.dropout2 = nn.Dropout(p=dropout) |
|
|
|
self.conv3 = nn.Conv2d(in_channels=64, out_channels=dmodel, kernel_size=(3, 6), stride=1, padding=(1, 0)) |
|
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) |
|
self.dropout3 = nn.Dropout(p=dropout) |
|
|
|
self.head_er = nn.Parameter(torch.randn(nhead, self.head_dim, 1)) |
|
|
|
self.Transformer_layers = nn.ModuleDict({}) |
|
for idx in range(nlayers): |
|
|
|
self.Transformer_layers[f'time_attention_{idx}'] = residual_block(2**idx, dmodel, dmodel, attn_len, dropout) |
|
|
|
|
|
if (idx >= 3) and (idx <= 5): |
|
self.Transformer_layers[f'instr_attention_{idx}'] = TransformerEncoderLayer(dmodel, nhead, d_hid, dropout, Er_provided=False, max_len=instr, norm_first=norm_first) |
|
|
|
self.out_linear = nn.Linear(dmodel, ntoken) |
|
|
|
self.dropout_t = nn.Dropout(p=.5) |
|
self.out_linear_t = nn.Linear(dmodel, 300) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
batch, instr, time, melbin = x.shape |
|
x = x.reshape(-1, 1, time, melbin) |
|
x = self.conv1(x) |
|
x = self.maxpool1(x) |
|
x = torch.relu(x) |
|
x = self.dropout1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.maxpool2(x) |
|
x = torch.relu(x) |
|
x = self.dropout2(x) |
|
|
|
x = self.conv3(x) |
|
x = self.maxpool3(x) |
|
x = torch.relu(x) |
|
x = self.dropout3(x) |
|
|
|
x = x.reshape(-1, self.dmodel, time).transpose(1, 2) |
|
t = [] |
|
|
|
for layer in range(self.nlayers): |
|
x = x.transpose(-1, -2) |
|
x, skip = self.Transformer_layers[f'time_attention_{layer}'](x) |
|
|
|
x = x.transpose(-1, -2) |
|
skip = skip.transpose(-1, -2).reshape(batch, instr, time, self.dmodel) |
|
|
|
t.append(skip.mean(1)) |
|
|
|
if (layer >= 3) and (layer <= 5): |
|
x = x.reshape(batch, instr, time, self.dmodel) |
|
x = x.permute(0, 2, 1, 3) |
|
x = x.reshape(-1, instr, self.dmodel) |
|
|
|
|
|
x = self.Transformer_layers[f'instr_attention_{layer}'](x) |
|
|
|
x = x.reshape(batch, time, instr, self.dmodel) |
|
x = x.permute(0, 2, 1, 3) |
|
x = x.reshape(-1, time, self.dmodel) |
|
|
|
x = torch.relu(x) |
|
x = x.reshape(batch, instr, time, self.dmodel) |
|
x = x.mean(1) |
|
x = self.out_linear(x) |
|
|
|
t = torch.stack(t, axis=-1).sum(dim=-1) |
|
t = torch.relu(t) |
|
t = self.dropout_t(t) |
|
t = t.mean(dim=1) |
|
t = self.out_linear_t(t) |
|
|
|
return x, t |
|
|
|
def inference(self, x): |
|
|
|
|
|
batch, instr, time, melbin = x.shape |
|
x = x.reshape(-1, 1, time, melbin) |
|
x = self.conv1(x) |
|
x = self.maxpool1(x) |
|
x = torch.relu(x) |
|
x = self.dropout1(x) |
|
|
|
x = self.conv2(x) |
|
x = self.maxpool2(x) |
|
x = torch.relu(x) |
|
x = self.dropout2(x) |
|
|
|
x = self.conv3(x) |
|
x = self.maxpool3(x) |
|
x = torch.relu(x) |
|
x = self.dropout3(x) |
|
|
|
x = x.reshape(-1, self.dmodel, time).transpose(1, 2) |
|
t = [] |
|
|
|
attn = [torch.eye(time, device=x.device).repeat(batch, self.nhead, 1, 1)] |
|
|
|
for layer in range(self.nlayers): |
|
x, skip, layer_attn = self.Transformer_layers[f'time_attention_{layer}'].inference(x, layer=layer, head_er=self.head_er) |
|
skip = skip.reshape(batch, instr, time, self.dmodel) |
|
t.append(skip.mean(1)) |
|
|
|
attn.append(torch.matmul(attn[-1], layer_attn.transpose(-2, -1))) |
|
|
|
if (layer >= 3) and (layer <= 5): |
|
x = x.reshape(batch, instr, time, self.dmodel) |
|
x = x.permute(0, 2, 1, 3) |
|
x = x.reshape(-1, instr, self.dmodel) |
|
|
|
|
|
x = self.Transformer_layers[f'instr_attention_{layer}'](x) |
|
|
|
x = x.reshape(batch, time, instr, self.dmodel) |
|
x = x.permute(0, 2, 1, 3) |
|
x = x.reshape(-1, time, self.dmodel) |
|
|
|
x = torch.relu(x) |
|
x = x.reshape(batch, instr, time, self.dmodel) |
|
x = x.mean(1) |
|
x = self.out_linear(x) |
|
|
|
t = torch.stack(t, axis=-1).sum(dim=-1) |
|
t = torch.relu(t) |
|
t = self.dropout_t(t) |
|
t = t.mean(dim=1) |
|
t = self.out_linear_t(t) |
|
|
|
return x, t, attn |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from spectrogram_dataset import audioDataset |
|
from torch.utils.data import DataLoader |
|
|
|
DEVICE = 'cpu' |
|
model = DemixedTCN(attn_len=5, instr=5, ntoken=2, dmodel=256, nhead=8, d_hid=1024, nlayers=9, norm_first=True, dropout=.1) |
|
model.to(DEVICE) |
|
model.eval() |
|
|
|
for name, param in model.state_dict().items(): |
|
print(name, param.shape) |
|
|
|
|
|
|
|
total = sum([param.nelement() for param in model.parameters()]) |
|
print(total) |
|
|
|
|