cmi / Beat-Transformer /code /eight_fold_test.py
nicolaus625's picture
Add files using upload-large-folder tool
659e74f verified
raw
history blame
18.5 kB
import os
import pickle
import torch
import madmom
import numpy as np
from utils import AverageMeter
from torch.utils.data import DataLoader
from DilatedTransformer import Demixed_DilatedTransformerModel
from spectrogram_dataset import audioDataset
from tqdm import tqdm
import shutil
import warnings
warnings.filterwarnings('ignore')
FPS = 44100 / 1024
NUM_FOLDS = 8
DEVICE='cuda:0'
#model
NORM_FIRST=True
ATTN_LEN=5
INSTR=5
NTOKEN=2
DMODEL=256
NHEAD=8
DHID=1024
NLAYER=9
#directories
DATASET_PATH = "./data/demix_spectrogram_data.npz"
ANNOTATION_PATH = './data/full_beat_annotation.npz'
DATA_TO_LOAD = ['ballroom'] #'ballroom', 'hainsworth', 'smc', 'carnetic', 'harmonix'
TEST_ONLY = []
DEMO_SAVE_ROOT = './save/inference'
if not os.path.exists(DEMO_SAVE_ROOT):
os.makedirs(DEMO_SAVE_ROOT)
PARAM_PATH = {
0: "./checkpoints/fold_0_trf_param.pt",
1: "./checkpoints/fold_1_trf_param.pt",
2: "./checkpoints/fold_2_trf_param.pt",
3: "./checkpoints/fold_3_trf_param.pt",
4: "./checkpoints/fold_4_trf_param.pt",
5: "./checkpoints/fold_5_trf_param.pt",
6: "./checkpoints/fold_6_trf_param.pt",
7: "./checkpoints/fold_7_trf_param.pt"
}
def infer_activation():
"""
run the model to predict (down-)beat activations
"""
dataset = audioDataset(data_to_load=DATA_TO_LOAD,
test_only_data = TEST_ONLY,
data_path = DATASET_PATH,
annotation_path = ANNOTATION_PATH,
fps = FPS,
sample_size = None,
num_folds = NUM_FOLDS)
inference_pred = {}
beat_gt = {}
downbeat_gt = {}
for FOLD in range(NUM_FOLDS):
print(f'\nFold {FOLD}')
train_set, val_set, test_set = dataset.get_fold(fold=FOLD)
#loader = DataLoader(val_set, batch_size=1, shuffle=False)
loader = DataLoader(test_set, batch_size=1, shuffle=False)
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN,
instr=INSTR,
ntoken=NTOKEN,
dmodel=DMODEL,
nhead=NHEAD,
d_hid=DHID,
nlayers=NLAYER,
norm_first=NORM_FIRST
)
#model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f'Fold_{FOLD}', 'model', 'trf_param_012.pt'), map_location=torch.device('cpu')))
model.load_state_dict(torch.load(PARAM_PATH[FOLD], map_location=torch.device('cpu'))['state_dict'])
model.to(DEVICE)
model.eval()
with torch.no_grad():
for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)):
#data
data = data.float().to(DEVICE)
pred, _ = model(data)
beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy()
downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy()
beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS)
downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS)
dataset_key = dataset_key[0]
root = root[0]
if not dataset_key in inference_pred:
inference_pred[dataset_key] = []
beat_gt[dataset_key] = []
downbeat_gt[dataset_key] = []
inference_pred[dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0))
beat_gt[dataset_key].append(beat)
downbeat_gt[dataset_key].append(downbeat)
#uncomment to save new activation inference
#print('saving prediction ...')
#with open(os.path.join(DEMO_SAVE_ROOT, 'inference_pred.pkl'), 'wb') as f:
# pickle.dump( inference_pred, f)
#print('saving gt ...')
#with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gt.pkl'), 'wb') as f:
# pickle.dump(beat_gt, f)
#with open(os.path.join(DEMO_SAVE_ROOT, 'down_gt.pkl'), 'wb') as f:
# pickle.dump(downbeat_gt, f)
def inference_dbn():
"""
run DBN to decode activations (saved by the last function) to (down-)beat timesteps and calculate accuracy w.r.t. groundtruth
"""
beat_DBN_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
print('loading activations ...')
with open(os.path.join(DEMO_SAVE_ROOT, 'inference_pred.pkl'), 'rb') as f:
activations = pickle.load(f)
with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gt.pkl'), 'rb') as f:
beat_gt = pickle.load(f)
with open(os.path.join(DEMO_SAVE_ROOT, 'down_gt.pkl'), 'rb') as f:
downbeat_gt = pickle.load(f)
for dataset_key in activations:
print(f'inferencing on {dataset_key} ...')
beat_error = 0
downbeat_error = 0
for i in tqdm(range(len(activations[dataset_key]))):
pred = activations[dataset_key][i]
#print(pred.shape)
beat = beat_gt[dataset_key][i]
downbeat = downbeat_gt[dataset_key][i]
try:
dbn_beat_pred = beat_tracker(pred[0])
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat)
beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure)
beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt)
beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt)
except Exception as e:
#print(f'beat inference encounter exception {e}')
beat_error += 1
try:
combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1) #(T, 2)
#print(combined_act.shape)
dbn_downbeat_pred = downbeat_tracker(combined_act)
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0]
downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat)
downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure)
downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt)
downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt)
except Exception as e:
#print(f'downbeat inference encounter exception {e}')
downbeat_error += 1
print(f'beat error: {beat_error}; downbeat error: {downbeat_error}')
print('DBN beat detection')
for key in beat_DBN_meter.avg.keys():
print('\t', key, beat_DBN_meter.avg[key])
print('DBN downbeat detection')
for key in downbeat_DBN_meter.avg.keys():
print('\t', key, downbeat_DBN_meter.avg[key])
def demo_inference_dbn():
"""
calculate accuracy and save the predicted (down-)beat timesteps into txt files
"""
beat_DBN_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
for dataset in DATA_TO_LOAD:
save_dir = os.path.join(DEMO_SAVE_ROOT, dataset)
print(f'Inferencing on {dataset} dataset ...')
for song in tqdm(os.listdir(save_dir)):
song_dir = os.path.join(save_dir, song)
beat_pred = np.loadtxt(os.path.join(song_dir, 'beat_activation.txt'))
downbeat_pred = np.loadtxt(os.path.join(song_dir, 'downbeat_activation.txt'))
beat_gt = np.loadtxt(os.path.join(song_dir, 'gt_beat.txt'))
dbn_beat_pred = beat_tracker(beat_pred)
np.savetxt(os.path.join(song_dir, 'dbn_beat_pred.txt'), dbn_beat_pred[:, np.newaxis])
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat_gt)
accuracy = [f'fmeasure\t{beat_score_DBN.fmeasure}\n', \
f'cmlt\t{beat_score_DBN.cmlt}\n', \
f'amlt\t{beat_score_DBN.amlt}\n']
with open(os.path.join(song_dir, 'accuracy.txt'), 'w') as f:
f.writelines(accuracy)
beat_DBN_meter.update(f'{dataset}-fmeasure', beat_score_DBN.fmeasure)
beat_DBN_meter.update(f'{dataset}-cmlt', beat_score_DBN.cmlt)
beat_DBN_meter.update(f'{dataset}-amlt', beat_score_DBN.amlt)
combined_act = np.concatenate((np.maximum(beat_pred - downbeat_pred, np.zeros(beat_pred.shape))[:, np.newaxis], downbeat_pred[:, np.newaxis]), axis=-1) #(T, 2)
#print(combined_act.shape)
dbn_downbeat_pred = downbeat_tracker(combined_act)
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0]
np.savetxt(os.path.join(song_dir, 'dbn_downbeat_pred.txt'), dbn_downbeat_pred[:, np.newaxis])
#downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat)
#downbeat_DBN_meter.update(f'{dataset}-fmeasure', downbeat_score_DBN.fmeasure)
#downbeat_DBN_meter.update(f'{dataset}-cmlt', downbeat_score_DBN.cmlt)
#downbeat_DBN_meter.update(f'{dataset}-amlt', downbeat_score_DBN.amlt)
print('DBN beat detection')
for key in beat_DBN_meter.avg.keys():
print('\t', key, beat_DBN_meter.avg[key])
print('DBN downbeat detection')
for key in downbeat_DBN_meter.avg.keys():
print('\t', key, downbeat_DBN_meter.avg[key])
def infer_gtzan_activation():
"""
predict (down-)beat activations for the test-only GTZAN dataset
"""
dataset = audioDataset(data_to_load=['gtzan'],
test_only_data = ['gtzan'],
data_path = DATASET_PATH,
annotation_path = ANNOTATION_PATH,
fps = FPS,
sample_size = None,
num_folds = NUM_FOLDS)
inference_pred = {}
beat_gt = {}
downbeat_gt = {}
FOLD = 7
train_set, val_set, test_set = dataset.get_fold(fold=FOLD)
#loader = DataLoader(val_set, batch_size=1, shuffle=False)
loader = DataLoader(test_set, batch_size=1, shuffle=False)
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN,
instr=INSTR,
ntoken=NTOKEN,
dmodel=DMODEL,
nhead=NHEAD,
d_hid=DHID,
nlayers=NLAYER,
norm_first=NORM_FIRST
)
#model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f'Fold_{FOLD}', 'model', 'trf_param_012.pt'), map_location=torch.device('cpu')))
model.load_state_dict(torch.load(PARAM_PATH[FOLD], map_location=torch.device('cpu'))['state_dict'])
model.to(DEVICE)
model.eval()
with torch.no_grad():
for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)):
#data
data = data.float().to(DEVICE)
pred, _ = model(data)
beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy()
downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy()
beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS)
downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS)
dataset_key = dataset_key[0]
if not dataset_key in inference_pred[FOLD]:
inference_pred[FOLD][dataset_key] = []
beat_gt[dataset_key] = []
downbeat_gt[dataset_key] = []
inference_pred[FOLD][dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0))
beat_gt[dataset_key].append(beat)
downbeat_gt[dataset_key].append(downbeat)
#uncomment to save new activation inference
#print('saving prediction ...')
#with open(os.path.join(DEMO_SAVE_ROOT, 'inference_gtzan_pred.pkl'), 'wb') as f:
# pickle.dump( inference_pred, f)
#print('saving gt ...')
#with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gtzan_gt.pkl'), 'wb') as f:
# pickle.dump(beat_gt, f)
#with open(os.path.join(DEMO_SAVE_ROOT, 'down_gtzan_gt.pkl'), 'wb') as f:
# pickle.dump(downbeat_gt, f)
def inference_gtzan_dbn():
"""
locate (down-)beat timesteps from activations for the test-only GTZAN dataset
"""
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS,
transition_lambda=100,
observation_lambda=6,
num_tempi=None,
threshold=0.2)
print('loading activations ...')
with open(os.path.join(DEMO_SAVE_ROOT, 'inference_gtzan_pred.pkl'), 'rb') as f:
activations = pickle.load(f)
with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gtzan_gt.pkl'), 'rb') as f:
beat_gt = pickle.load(f)
with open(os.path.join(DEMO_SAVE_ROOT, 'down_gtzan_gt.pkl'), 'rb') as f:
downbeat_gt = pickle.load(f)
dataset_key ='gtzan'
print(f'inferencing on {dataset_key} ...')
FOLD = 7
beat_DBN_meter = AverageMeter()
downbeat_DBN_meter = AverageMeter()
beat_error = 0
downbeat_error = 0
for i in tqdm(range(len(activations[FOLD][dataset_key]))):
pred = activations[FOLD][dataset_key][i]
#print(pred.shape)
beat = beat_gt[dataset_key][i]
downbeat = downbeat_gt[dataset_key][i]
try:
dbn_beat_pred = beat_tracker(pred[0])
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat)
beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure)
beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt)
beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt)
except Exception as e:
#print(f'beat inference encounter exception {e}')
beat_error += 1
try:
combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1) #(T, 2)
#print(combined_act.shape)
dbn_downbeat_pred = downbeat_tracker(combined_act)
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0]
downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat)
downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure)
downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt)
downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt)
except Exception as e:
#print(f'downbeat inference encounter exception {e}')
downbeat_error += 1
print(f'beat error: {beat_error}; downbeat error: {downbeat_error}')
print('DBN beat detection')
for key in beat_DBN_meter.avg.keys():
print('\t', key, beat_DBN_meter.avg[key])
print('DBN downbeat detection')
for key in downbeat_DBN_meter.avg.keys():
print('\t', key, downbeat_DBN_meter.avg[key])
if __name__ == '__main__':
#infer_activation()
inference_dbn()
#infer_gtzan_activation
inference_gtzan_dbn()