|
import os |
|
import pickle |
|
import torch |
|
import madmom |
|
import numpy as np |
|
from utils import AverageMeter |
|
from torch.utils.data import DataLoader |
|
from DilatedTransformer import Demixed_DilatedTransformerModel |
|
from spectrogram_dataset import audioDataset |
|
from tqdm import tqdm |
|
import shutil |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
|
|
FPS = 44100 / 1024 |
|
NUM_FOLDS = 8 |
|
DEVICE='cuda:0' |
|
|
|
NORM_FIRST=True |
|
ATTN_LEN=5 |
|
INSTR=5 |
|
NTOKEN=2 |
|
DMODEL=256 |
|
NHEAD=8 |
|
DHID=1024 |
|
NLAYER=9 |
|
|
|
DATASET_PATH = "./data/demix_spectrogram_data.npz" |
|
ANNOTATION_PATH = './data/full_beat_annotation.npz' |
|
DATA_TO_LOAD = ['ballroom'] |
|
TEST_ONLY = [] |
|
DEMO_SAVE_ROOT = './save/inference' |
|
if not os.path.exists(DEMO_SAVE_ROOT): |
|
os.makedirs(DEMO_SAVE_ROOT) |
|
|
|
|
|
PARAM_PATH = { |
|
0: "./checkpoints/fold_0_trf_param.pt", |
|
1: "./checkpoints/fold_1_trf_param.pt", |
|
2: "./checkpoints/fold_2_trf_param.pt", |
|
3: "./checkpoints/fold_3_trf_param.pt", |
|
4: "./checkpoints/fold_4_trf_param.pt", |
|
5: "./checkpoints/fold_5_trf_param.pt", |
|
6: "./checkpoints/fold_6_trf_param.pt", |
|
7: "./checkpoints/fold_7_trf_param.pt" |
|
} |
|
|
|
|
|
|
|
def infer_activation(): |
|
""" |
|
run the model to predict (down-)beat activations |
|
""" |
|
dataset = audioDataset(data_to_load=DATA_TO_LOAD, |
|
test_only_data = TEST_ONLY, |
|
data_path = DATASET_PATH, |
|
annotation_path = ANNOTATION_PATH, |
|
fps = FPS, |
|
sample_size = None, |
|
num_folds = NUM_FOLDS) |
|
|
|
inference_pred = {} |
|
beat_gt = {} |
|
downbeat_gt = {} |
|
|
|
for FOLD in range(NUM_FOLDS): |
|
print(f'\nFold {FOLD}') |
|
train_set, val_set, test_set = dataset.get_fold(fold=FOLD) |
|
|
|
loader = DataLoader(test_set, batch_size=1, shuffle=False) |
|
|
|
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN, |
|
instr=INSTR, |
|
ntoken=NTOKEN, |
|
dmodel=DMODEL, |
|
nhead=NHEAD, |
|
d_hid=DHID, |
|
nlayers=NLAYER, |
|
norm_first=NORM_FIRST |
|
) |
|
|
|
model.load_state_dict(torch.load(PARAM_PATH[FOLD], map_location=torch.device('cpu'))['state_dict']) |
|
model.to(DEVICE) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)): |
|
|
|
data = data.float().to(DEVICE) |
|
pred, _ = model(data) |
|
beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy() |
|
downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy() |
|
|
|
beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS) |
|
downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS) |
|
|
|
dataset_key = dataset_key[0] |
|
root = root[0] |
|
if not dataset_key in inference_pred: |
|
inference_pred[dataset_key] = [] |
|
beat_gt[dataset_key] = [] |
|
downbeat_gt[dataset_key] = [] |
|
inference_pred[dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0)) |
|
beat_gt[dataset_key].append(beat) |
|
downbeat_gt[dataset_key].append(downbeat) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inference_dbn(): |
|
""" |
|
run DBN to decode activations (saved by the last function) to (down-)beat timesteps and calculate accuracy w.r.t. groundtruth |
|
""" |
|
beat_DBN_meter = AverageMeter() |
|
downbeat_DBN_meter = AverageMeter() |
|
|
|
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
|
|
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
|
|
print('loading activations ...') |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'inference_pred.pkl'), 'rb') as f: |
|
activations = pickle.load(f) |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gt.pkl'), 'rb') as f: |
|
beat_gt = pickle.load(f) |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'down_gt.pkl'), 'rb') as f: |
|
downbeat_gt = pickle.load(f) |
|
|
|
for dataset_key in activations: |
|
print(f'inferencing on {dataset_key} ...') |
|
beat_error = 0 |
|
downbeat_error = 0 |
|
for i in tqdm(range(len(activations[dataset_key]))): |
|
pred = activations[dataset_key][i] |
|
|
|
beat = beat_gt[dataset_key][i] |
|
downbeat = downbeat_gt[dataset_key][i] |
|
|
|
try: |
|
dbn_beat_pred = beat_tracker(pred[0]) |
|
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat) |
|
beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure) |
|
beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt) |
|
beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt) |
|
|
|
except Exception as e: |
|
|
|
beat_error += 1 |
|
|
|
|
|
try: |
|
combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1) |
|
|
|
dbn_downbeat_pred = downbeat_tracker(combined_act) |
|
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0] |
|
|
|
downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat) |
|
downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure) |
|
downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt) |
|
downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt) |
|
except Exception as e: |
|
|
|
downbeat_error += 1 |
|
print(f'beat error: {beat_error}; downbeat error: {downbeat_error}') |
|
|
|
print('DBN beat detection') |
|
for key in beat_DBN_meter.avg.keys(): |
|
print('\t', key, beat_DBN_meter.avg[key]) |
|
|
|
print('DBN downbeat detection') |
|
for key in downbeat_DBN_meter.avg.keys(): |
|
print('\t', key, downbeat_DBN_meter.avg[key]) |
|
|
|
|
|
def demo_inference_dbn(): |
|
""" |
|
calculate accuracy and save the predicted (down-)beat timesteps into txt files |
|
""" |
|
beat_DBN_meter = AverageMeter() |
|
downbeat_DBN_meter = AverageMeter() |
|
|
|
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
|
|
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
for dataset in DATA_TO_LOAD: |
|
save_dir = os.path.join(DEMO_SAVE_ROOT, dataset) |
|
print(f'Inferencing on {dataset} dataset ...') |
|
for song in tqdm(os.listdir(save_dir)): |
|
song_dir = os.path.join(save_dir, song) |
|
beat_pred = np.loadtxt(os.path.join(song_dir, 'beat_activation.txt')) |
|
downbeat_pred = np.loadtxt(os.path.join(song_dir, 'downbeat_activation.txt')) |
|
beat_gt = np.loadtxt(os.path.join(song_dir, 'gt_beat.txt')) |
|
|
|
dbn_beat_pred = beat_tracker(beat_pred) |
|
np.savetxt(os.path.join(song_dir, 'dbn_beat_pred.txt'), dbn_beat_pred[:, np.newaxis]) |
|
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat_gt) |
|
|
|
accuracy = [f'fmeasure\t{beat_score_DBN.fmeasure}\n', \ |
|
f'cmlt\t{beat_score_DBN.cmlt}\n', \ |
|
f'amlt\t{beat_score_DBN.amlt}\n'] |
|
with open(os.path.join(song_dir, 'accuracy.txt'), 'w') as f: |
|
f.writelines(accuracy) |
|
|
|
beat_DBN_meter.update(f'{dataset}-fmeasure', beat_score_DBN.fmeasure) |
|
beat_DBN_meter.update(f'{dataset}-cmlt', beat_score_DBN.cmlt) |
|
beat_DBN_meter.update(f'{dataset}-amlt', beat_score_DBN.amlt) |
|
|
|
|
|
combined_act = np.concatenate((np.maximum(beat_pred - downbeat_pred, np.zeros(beat_pred.shape))[:, np.newaxis], downbeat_pred[:, np.newaxis]), axis=-1) |
|
|
|
dbn_downbeat_pred = downbeat_tracker(combined_act) |
|
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0] |
|
np.savetxt(os.path.join(song_dir, 'dbn_downbeat_pred.txt'), dbn_downbeat_pred[:, np.newaxis]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print('DBN beat detection') |
|
for key in beat_DBN_meter.avg.keys(): |
|
print('\t', key, beat_DBN_meter.avg[key]) |
|
|
|
print('DBN downbeat detection') |
|
for key in downbeat_DBN_meter.avg.keys(): |
|
print('\t', key, downbeat_DBN_meter.avg[key]) |
|
|
|
|
|
|
|
def infer_gtzan_activation(): |
|
""" |
|
predict (down-)beat activations for the test-only GTZAN dataset |
|
""" |
|
dataset = audioDataset(data_to_load=['gtzan'], |
|
test_only_data = ['gtzan'], |
|
data_path = DATASET_PATH, |
|
annotation_path = ANNOTATION_PATH, |
|
fps = FPS, |
|
sample_size = None, |
|
num_folds = NUM_FOLDS) |
|
|
|
inference_pred = {} |
|
beat_gt = {} |
|
downbeat_gt = {} |
|
|
|
FOLD = 7 |
|
train_set, val_set, test_set = dataset.get_fold(fold=FOLD) |
|
|
|
loader = DataLoader(test_set, batch_size=1, shuffle=False) |
|
|
|
model = Demixed_DilatedTransformerModel(attn_len=ATTN_LEN, |
|
instr=INSTR, |
|
ntoken=NTOKEN, |
|
dmodel=DMODEL, |
|
nhead=NHEAD, |
|
d_hid=DHID, |
|
nlayers=NLAYER, |
|
norm_first=NORM_FIRST |
|
) |
|
|
|
model.load_state_dict(torch.load(PARAM_PATH[FOLD], map_location=torch.device('cpu'))['state_dict']) |
|
model.to(DEVICE) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
for idx, (dataset_key, data, beat, downbeat, tempo, root) in tqdm(enumerate(loader), total=len(loader)): |
|
|
|
data = data.float().to(DEVICE) |
|
pred, _ = model(data) |
|
beat_pred = torch.sigmoid(pred[0, :, 0]).detach().cpu().numpy() |
|
downbeat_pred = torch.sigmoid(pred[0, :, 1]).detach().cpu().numpy() |
|
|
|
beat = torch.nonzero(beat[0]>.5)[:, 0].detach().numpy() / (FPS) |
|
downbeat = torch.nonzero(downbeat[0]>.5)[:, 0].detach().numpy() / (FPS) |
|
|
|
dataset_key = dataset_key[0] |
|
if not dataset_key in inference_pred[FOLD]: |
|
inference_pred[FOLD][dataset_key] = [] |
|
beat_gt[dataset_key] = [] |
|
downbeat_gt[dataset_key] = [] |
|
inference_pred[FOLD][dataset_key].append(np.stack((beat_pred, downbeat_pred), axis=0)) |
|
beat_gt[dataset_key].append(beat) |
|
downbeat_gt[dataset_key].append(downbeat) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inference_gtzan_dbn(): |
|
""" |
|
locate (down-)beat timesteps from activations for the test-only GTZAN dataset |
|
""" |
|
beat_tracker = madmom.features.beats.DBNBeatTrackingProcessor(min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
|
|
downbeat_tracker = madmom.features.downbeats.DBNDownBeatTrackingProcessor(beats_per_bar=[3, 4], min_bpm=55.0, max_bpm=215.0, fps=FPS, |
|
transition_lambda=100, |
|
observation_lambda=6, |
|
num_tempi=None, |
|
threshold=0.2) |
|
|
|
print('loading activations ...') |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'inference_gtzan_pred.pkl'), 'rb') as f: |
|
activations = pickle.load(f) |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'beat_gtzan_gt.pkl'), 'rb') as f: |
|
beat_gt = pickle.load(f) |
|
with open(os.path.join(DEMO_SAVE_ROOT, 'down_gtzan_gt.pkl'), 'rb') as f: |
|
downbeat_gt = pickle.load(f) |
|
|
|
dataset_key ='gtzan' |
|
print(f'inferencing on {dataset_key} ...') |
|
FOLD = 7 |
|
beat_DBN_meter = AverageMeter() |
|
downbeat_DBN_meter = AverageMeter() |
|
beat_error = 0 |
|
downbeat_error = 0 |
|
for i in tqdm(range(len(activations[FOLD][dataset_key]))): |
|
pred = activations[FOLD][dataset_key][i] |
|
|
|
beat = beat_gt[dataset_key][i] |
|
downbeat = downbeat_gt[dataset_key][i] |
|
|
|
try: |
|
dbn_beat_pred = beat_tracker(pred[0]) |
|
beat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_beat_pred, beat) |
|
beat_DBN_meter.update(f'{dataset_key}-fmeasure', beat_score_DBN.fmeasure) |
|
beat_DBN_meter.update(f'{dataset_key}-cmlt', beat_score_DBN.cmlt) |
|
beat_DBN_meter.update(f'{dataset_key}-amlt', beat_score_DBN.amlt) |
|
except Exception as e: |
|
|
|
beat_error += 1 |
|
|
|
|
|
try: |
|
combined_act = np.concatenate((np.maximum(pred[0] - pred[1], np.zeros(pred[0].shape))[:, np.newaxis], pred[1][:, np.newaxis]), axis=-1) |
|
|
|
dbn_downbeat_pred = downbeat_tracker(combined_act) |
|
dbn_downbeat_pred = dbn_downbeat_pred[dbn_downbeat_pred[:, 1]==1][:, 0] |
|
|
|
downbeat_score_DBN = madmom.evaluation.beats.BeatEvaluation(dbn_downbeat_pred, downbeat) |
|
downbeat_DBN_meter.update(f'{dataset_key}-fmeasure', downbeat_score_DBN.fmeasure) |
|
downbeat_DBN_meter.update(f'{dataset_key}-cmlt', downbeat_score_DBN.cmlt) |
|
downbeat_DBN_meter.update(f'{dataset_key}-amlt', downbeat_score_DBN.amlt) |
|
except Exception as e: |
|
|
|
downbeat_error += 1 |
|
print(f'beat error: {beat_error}; downbeat error: {downbeat_error}') |
|
|
|
print('DBN beat detection') |
|
for key in beat_DBN_meter.avg.keys(): |
|
print('\t', key, beat_DBN_meter.avg[key]) |
|
|
|
print('DBN downbeat detection') |
|
for key in downbeat_DBN_meter.avg.keys(): |
|
print('\t', key, downbeat_DBN_meter.avg[key]) |
|
|
|
if __name__ == '__main__': |
|
|
|
inference_dbn() |
|
|
|
inference_gtzan_dbn() |
|
|
|
|
|
|
|
|