|
import json |
|
import hashlib |
|
import random |
|
|
|
|
|
|
|
PATH = "/work/fast_data_yinghao/MTG/mtg-jamendo-dataset/data" |
|
|
|
|
|
number_to_letter = { |
|
0: "A", |
|
1: "B", |
|
2: "C", |
|
3: "D" |
|
} |
|
|
|
def get_genre(_="test"): |
|
data_samples = [] |
|
for split in [_]: |
|
input_file_path = f'{PATH}/splits/split-0/autotagging_genre-{split}.tsv' |
|
|
|
with open(input_file_path, "r") as f: |
|
for idx, line in enumerate(f): |
|
if idx > 0: |
|
tmp = line.strip().split("\t") |
|
genres = tmp[5:] |
|
audio_path = tmp[3] |
|
audioid = "66_MTG-Jamendo_" + audio_path.split("/")[-1] |
|
if "low" not in audioid: |
|
audioid = audioid[:-4] + ".low.mp3" |
|
|
|
data_sample = { |
|
"instruction": "Please provide the genre of given audio.", |
|
"input": f"<|SOA|>f'{audio_path}'<|EOA|>", |
|
"output": ", ".join(sorted([genre.split("-")[-1] for genre in genres])), |
|
"uuid": audio_path, |
|
"split": [split if split != "validation" else "dev"], |
|
"task_type": {"major": ["global_MIR"], "minor": ["genre_classification"]}, |
|
"domain": "music", |
|
"audioid": audio_path, |
|
"source": "MTG", |
|
"other": {"tag":"null"} |
|
} |
|
data_samples.append(data_sample) |
|
|
|
|
|
f.close() |
|
|
|
|
|
existed_uuid_list = set() |
|
all_genres = set(genre for data_sample in data_samples for genre in data_sample["output"].split(", ")) |
|
for data_sample in data_samples: |
|
|
|
data_sample["instruction"] = data_sample["instruction"] + " If you can find multiple genres, please output in alphabeta order. Use ', ' to split multiple tags." |
|
|
|
|
|
uuid_string = f"{data_sample['instruction']}#{data_sample['input']}#{data_sample['output']}" |
|
unique_id = hashlib.md5(uuid_string.encode()).hexdigest()[:16] |
|
|
|
if unique_id in existed_uuid_list: |
|
sha1_hash = hashlib.sha1(uuid_string.encode()).hexdigest()[:16] |
|
unique_id = hashlib.md5((unique_id + sha1_hash).encode()).hexdigest()[:16] |
|
|
|
existed_uuid_list.add(unique_id) |
|
data_sample["uuid"] = f"{unique_id}" |
|
|
|
return data_samples |
|
|
|
if __name__ == "__main__": |
|
print("start") |
|
for split in ["test", "train", "validation"]: |
|
data_samples = get_genre(split) |
|
|
|
output_file_path = f'genre_{split}.jsonl' |
|
|
|
with open(output_file_path, 'w') as outfile: |
|
for sample in data_samples: |
|
json.dump(sample, outfile) |
|
|
|
outfile.write('\n') |
|
outfile.close() |
|
|