|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn.modules.normalization import LayerNorm |
|
|
|
|
|
class DilatedMultiheadSelfAttentionWithRelativePositionalEmbedding(nn.Module): |
|
def __init__(self, dmodel, num_heads, dropout=0, Er_provided=False, attn_len=5): |
|
super(DilatedMultiheadSelfAttentionWithRelativePositionalEmbedding, self).__init__() |
|
self.attn_len = attn_len |
|
self.dmodel = dmodel |
|
self.num_heads = num_heads |
|
self.head_dim = dmodel // num_heads |
|
assert self.head_dim * num_heads == dmodel, "embed_dim must be divisible by num_heads" |
|
|
|
self.key = nn.Linear(dmodel, dmodel) |
|
self.value = nn.Linear(dmodel, dmodel) |
|
self.query = nn.Linear(dmodel, dmodel) |
|
self.dropout = nn.Dropout(dropout) |
|
self.Er_provided = Er_provided |
|
|
|
if not Er_provided: |
|
self.Er = nn.Parameter(torch.randn(num_heads, self.head_dim, attn_len)) |
|
|
|
|
|
def forward(self, query, key, value, layer=0): |
|
|
|
|
|
batch, time, d_model = query.shape |
|
|
|
q = self.query(query).reshape(batch, time, self.num_heads, 1, self.head_dim).transpose(1, 2) |
|
k = self.key(key).reshape(batch, time, self.num_heads, 1, self.head_dim).transpose(1, 2) |
|
v = self.value(value).reshape(batch, time, self.num_heads, 1, self.head_dim).transpose(1, 2) |
|
|
|
k = torch.cat( |
|
( |
|
self.kv_roll(k[:, 0: 4], layer, padding_value=0, shift=0), |
|
self.kv_roll(k[:, 4: 5], layer, padding_value=0, shift=-2), |
|
self.kv_roll(k[:, 5: 6], layer, padding_value=0, shift=-1), |
|
self.kv_roll(k[:, 6: 7], layer, padding_value=0, shift=1), |
|
self.kv_roll(k[:, 6: 7], layer, padding_value=0, shift=2) |
|
), |
|
dim=1 |
|
) |
|
|
|
v = torch.cat( |
|
( |
|
self.kv_roll(v[:, 0: 4], layer, padding_value=0, shift=0), |
|
self.kv_roll(v[:, 4: 5], layer, padding_value=0, shift=-2), |
|
self.kv_roll(v[:, 5: 6], layer, padding_value=0, shift=-1), |
|
self.kv_roll(v[:, 6: 7], layer, padding_value=0, shift=1), |
|
self.kv_roll(v[:, 7: 8], layer, padding_value=0, shift=2) |
|
), |
|
dim=1 |
|
) |
|
|
|
Er_t = self.Er.unsqueeze(1).unsqueeze(0) |
|
|
|
qk = torch.matmul(q, k.transpose(-2, -1)) |
|
attn_mask = torch.zeros_like(qk).masked_fill_((qk==0), float('-inf')) |
|
attn = (qk + torch.matmul(q, Er_t)) / math.sqrt(self.head_dim) |
|
attn = F.softmax(attn + attn_mask, dim=-1) |
|
|
|
out = torch.matmul(attn, v) |
|
out = out.squeeze(-2).transpose(1, 2).reshape(batch, time, d_model) |
|
|
|
return self.dropout(out), attn |
|
|
|
|
|
|
|
def kv_roll(self, tensor, layer, padding_value=0, shift=1): |
|
|
|
batch, num_head, time, _, head_dim = tensor.shape |
|
|
|
tensor = F.pad(tensor, (0, 0, 0, 0, (2**layer)*(self.attn_len//2), (2**layer)*(self.attn_len//2)), mode='constant', value=padding_value) |
|
|
|
|
|
tensor = torch.cat([torch.roll(tensor, shifts=-i*(2**layer), dims=2) for i in range(shift, self.attn_len+shift)], dim=-2) |
|
|
|
|
|
return tensor[:, :, :time, :, :] |
|
|
|
|
|
|
|
|
|
class DilatedTransformerLayer(nn.Module): |
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, Er_provided=False, attn_len=5, norm_first=False, layer_norm_eps=1e-5): |
|
super(DilatedTransformerLayer, self).__init__() |
|
self.self_attn = DilatedMultiheadSelfAttentionWithRelativePositionalEmbedding(d_model, nhead, dropout, Er_provided, attn_len) |
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm_first = norm_first |
|
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps) |
|
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.activation = F.gelu |
|
|
|
|
|
def forward(self, x, layer=0): |
|
|
|
if self.norm_first: |
|
x_ = self._sa_block(self.norm1(x), layer)[0] |
|
x = x + x_ |
|
x = x + self._ff_block(self.norm2(x)) |
|
else: |
|
x_ = self._sa_block(x, layer)[0] |
|
x = self.norm1(x + x_) |
|
x = self.norm2(x + self._ff_block(x)) |
|
return x, x_ |
|
|
|
|
|
def inference(self, x, layer=0): |
|
|
|
if self.norm_first: |
|
x_, attn = self._sa_block(self.norm1(x), layer) |
|
x = x + x_ |
|
x = x + self._ff_block(self.norm2(x)) |
|
else: |
|
x_, attn = self._sa_block(x, layer) |
|
x = self.norm1(x + x_) |
|
x = self.norm2(x + self._ff_block(x)) |
|
|
|
|
|
attn = attn.squeeze(-2) |
|
batch, num_head, time, attn_len = attn.shape |
|
padded_attn_len = (attn_len-1) * (2**layer) + 1 |
|
tmp_output = torch.zeros(batch, num_head, time, padded_attn_len, device=x.device) |
|
for i, j in enumerate(range(0, padded_attn_len, 2**layer)): |
|
tmp_output[:, :, :, j] = attn[:, :, :, i] |
|
|
|
attn = torch.zeros(batch, num_head, time, time+(padded_attn_len-1)*2, device=x.device) |
|
for i in range(time): |
|
attn[:, :, i, i: i+padded_attn_len] = tmp_output[:, :, i] |
|
|
|
center = (padded_attn_len-1) |
|
attn = torch.cat( |
|
[ |
|
attn[:, 0: 4, :, center - (2**layer) * 2: center - (2**layer) * 2 + time], |
|
attn[:, 4: 5, :, center - (2**layer) * 1: center - (2**layer) * 1 + time], |
|
attn[:, 5: 6, :, center - (2**layer) * 0: center - (2**layer) * 0 + time], |
|
attn[:, 6: 7, :, center - (2**layer) * 3: center - (2**layer) * 3 + time], |
|
attn[:, 7: 8, :, center - (2**layer) * 4: center - (2**layer) * 4 + time] |
|
], |
|
dim=1 |
|
) |
|
|
|
return x, x_, attn |
|
|
|
|
|
|
|
def _sa_block(self, x, layer=0): |
|
x, attn = self.self_attn(x, x, x, layer) |
|
return self.dropout1(x), attn |
|
|
|
|
|
|
|
def _ff_block(self, x): |
|
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) |
|
return self.dropout2(x) |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
BATCH=1 |
|
TIME=9 |
|
DMODEL=8 |
|
N_HEAD=4 |
|
ATTN_LEN=5 |
|
LAYER=1 |
|
|
|
x = torch.ones(BATCH, TIME, DMODEL) |
|
|
|
model = DilatedMultiheadSelfAttentionWithRelativePositionalEmbedding(dmodel=DMODEL, num_heads=N_HEAD, attn_len=ATTN_LEN) |
|
|
|
output, attn = model(x, x, x, layer=LAYER) |
|
print(attn[0, 0, :, :, :]) |