#!/bin/bash # Copyright (c) 2017 Johns Hopkins University (Author: Yenda Trmal, Shinji Watanabe) # Apache 2.0 export LC_ALL=C # Begin configuration section. words_file= train_text= dev_text= oov_symbol="" # End configuration section echo "$0 $@" [ -f path.sh ] && . ./path.sh . ./utils/parse_options.sh || exit 1 echo "-------------------------------------" echo "Building an SRILM language model " echo "-------------------------------------" if [ $# -ne 2 ] ; then echo "Incorrect number of parameters. " echo "Script has to be called like this:" echo " $0 [switches] " echo "For example: " echo " $0 data data/srilm" echo "The allowed switches are: " echo " words_file= word list file -- data/lang/words.txt by default" echo " train_text= data/train/text is used in case when not specified" echo " dev_text= last 10 % of the train text is used by default" echo " oov_symbol=> symbol to use for oov modeling -- by default" exit 1 fi datadir=$1 tgtdir=$2 ##End of configuration loc=`which ngram-count`; if [ -z $loc ]; then echo >&2 "You appear to not have SRILM tools installed, either on your path," echo >&2 "Use the script \$KALDI_ROOT/tools/install_srilm.sh to install it." exit 1 fi # Prepare the destination directory mkdir -p $tgtdir for f in $words_file $train_text $dev_text; do [ ! -s $f ] && echo "No such file $f" && exit 1; done [ -z $words_file ] && words_file=$datadir/lang/words.txt if [ ! -z "$train_text" ] && [ -z "$dev_text" ] ; then nr=`cat $train_text | wc -l` nr_dev=$(($nr / 10 )) nr_train=$(( $nr - $nr_dev )) orig_train_text=$train_text head -n $nr_train $train_text > $tgtdir/train_text tail -n $nr_dev $train_text > $tgtdir/dev_text train_text=$tgtdir/train_text dev_text=$tgtdir/dev_text echo "Using words file: $words_file" echo "Using train text: 9/10 of $orig_train_text" echo "Using dev text : 1/10 of $orig_train_text" elif [ ! -z "$train_text" ] && [ ! -z "$dev_text" ] ; then echo "Using words file: $words_file" echo "Using train text: $train_text" echo "Using dev text : $dev_text" train_text=$train_text dev_text=$dev_text else train_text=$datadir/train/text dev_text=$datadir/dev2h/text echo "Using words file: $words_file" echo "Using train text: $train_text" echo "Using dev text : $dev_text" fi [ ! -f $words_file ] && echo >&2 "File $words_file must exist!" && exit 1 [ ! -f $train_text ] && echo >&2 "File $train_text must exist!" && exit 1 [ ! -f $dev_text ] && echo >&2 "File $dev_text must exist!" && exit 1 # Extract the word list from the training dictionary; exclude special symbols sort $words_file | awk '{print $1}' | grep -v '\#0' | grep -v '' | grep -v -F "$oov_symbol" > $tgtdir/vocab if (($?)); then echo "Failed to create vocab from $words_file" exit 1 else # wc vocab # doesn't work due to some encoding issues echo vocab contains `cat $tgtdir/vocab | perl -ne 'BEGIN{$l=$w=0;}{split; $w+=$#_; $w++; $l++;}END{print "$l lines, $w words\n";}'` fi # corpus file has <\s> tag; remove it sed -e 's/^\w*\ *//' -e 's/ \+[^ ]\+$//' $train_text | sort -u | \ perl -ane 'print join(" ", @F[1..$#F]) . "\n" if @F > 1' > $tgtdir/train.txt if (($?)); then echo "Failed to create $tgtdir/train.txt from $train_text" exit 1 else echo "Removed first and last word ( <\s> tags) from every line of $train_text" # wc text.train train.txt # doesn't work due to some encoding issues echo $train_text contains `cat $train_text | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $w--; $s++;}END{print "$w words, $s sentences\n";}'` echo train.txt contains `cat $tgtdir/train.txt | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $s++;}END{print "$w words, $s sentences\n";}'` fi # data/dev/text cat $dev_text | cut -d ' ' -f 2- > $tgtdir/dev.txt if (($?)); then echo "Failed to create $tgtdir/dev.txt from $dev_text" exit 1 else echo "Removed first word (uid) from every line of $dev_text" # wc text.train train.txt # doesn't work due to some encoding issues echo $dev_text contains `cat $dev_text | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $w--; $s++;}END{print "$w words, $s sentences\n";}'` echo $tgtdir/dev.txt contains `cat $tgtdir/dev.txt | perl -ane 'BEGIN{$w=$s=0;}{$w+=@F; $s++;}END{print "$w words, $s sentences\n";}'` fi if [ ! -z ${LIBLBFGS} ]; then #please note that if the switch -map-unk "$oov_symbol" is used with -maxent-convert-to-arpa, ngram-count will segfault #instead of that, we simply output the model in the maxent format and convert it using the "ngram" echo "-------------------" echo "Maxent 3grams" echo "-------------------" sed 's/'${oov_symbol}'//g' $tgtdir/train.txt | \ ngram-count -lm - -order 3 -text - -vocab $tgtdir/vocab -unk -sort -maxent -maxent-convert-to-arpa|\ ngram -lm - -order 3 -unk -map-unk "$oov_symbol" -prune-lowprobs -write-lm - |\ sed 's//'${oov_symbol}'/g' | gzip -c > $tgtdir/3gram.me.gz || exit 1 echo "-------------------" echo "Maxent 4grams" echo "-------------------" sed 's/'${oov_symbol}'//g' $tgtdir/train.txt | \ ngram-count -lm - -order 4 -text - -vocab $tgtdir/vocab -unk -sort -maxent -maxent-convert-to-arpa|\ ngram -lm - -order 4 -unk -map-unk "$oov_symbol" -prune-lowprobs -write-lm - |\ sed 's//'${oov_symbol}'/g' | gzip -c > $tgtdir/4gram.me.gz || exit 1 else echo >&2 "SRILM is not compiled with the support of MaxEnt models." echo >&2 "You should use the script in \$KALDI_ROOT/tools/install_srilm.sh" echo >&2 "which will take care of compiling the SRILM with MaxEnt support" exit 1; fi echo "--------------------" echo "Computing perplexity" echo "--------------------" ( for f in $tgtdir/3gram* ; do ( echo $f; ngram -order 3 -lm $f -unk -map-unk "$oov_symbol" -prune-lowprobs -ppl $tgtdir/dev.txt ) | paste -s -d ' ' ; done for f in $tgtdir/4gram* ; do ( echo $f; ngram -order 4 -lm $f -unk -map-unk "$oov_symbol" -prune-lowprobs -ppl $tgtdir/dev.txt ) | paste -s -d ' ' ; done ) | sort -r -n -k 15,15g | column -t | tee $tgtdir/perplexities.txt echo "The perlexity scores report is stored in $tgtdir/perplexities.txt " echo "" for best_ngram in {3,4}gram ; do outlm=best_${best_ngram}.gz lmfilename=$(grep "${best_ngram}" $tgtdir/perplexities.txt | head -n 1 | cut -f 1 -d ' ') echo "$outlm -> $lmfilename" (cd $tgtdir; rm -f $outlm; ln -sf $(basename $lmfilename) $outlm ) done