import math import torch import itertools as it from torch.optim import Optimizer from collections import defaultdict class Lookahead(Optimizer): ''' PyTorch implementation of the lookahead wrapper. Lookahead Optimizer: https://arxiv.org/abs/1907.08610 ''' def __init__(self, optimizer,alpha=0.5, k=6,pullback_momentum="none"): ''' :param optimizer:inner optimizer :param k (int): number of lookahead steps :param alpha(float): linear interpolation factor. 1.0 recovers the inner optimizer. :param pullback_momentum (str): change to inner optimizer momentum on interpolation update ''' if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') self.optimizer = optimizer self.param_groups = self.optimizer.param_groups self.alpha = alpha self.k = k self.step_counter = 0 assert pullback_momentum in ["reset", "pullback", "none"] self.pullback_momentum = pullback_momentum self.state = defaultdict(dict) # Cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['cached_params'] = torch.zeros_like(p.data) param_state['cached_params'].copy_(p.data) def __getstate__(self): return { 'state': self.state, 'optimizer': self.optimizer, 'alpha': self.alpha, 'step_counter': self.step_counter, 'k':self.k, 'pullback_momentum': self.pullback_momentum } def zero_grad(self): self.optimizer.zero_grad() def state_dict(self): return self.optimizer.state_dict() def load_state_dict(self, state_dict): self.optimizer.load_state_dict(state_dict) def _backup_and_load_cache(self): """Useful for performing evaluation on the slow weights (which typically generalize better) """ for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] param_state['backup_params'] = torch.zeros_like(p.data) param_state['backup_params'].copy_(p.data) p.data.copy_(param_state['cached_params']) def _clear_and_load_backup(self): for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.copy_(param_state['backup_params']) del param_state['backup_params'] def step(self, closure=None): """Performs a single Lookahead optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = self.optimizer.step(closure) self.step_counter += 1 if self.step_counter >= self.k: self.step_counter = 0 # Lookahead and cache the current optimizer parameters for group in self.optimizer.param_groups: for p in group['params']: param_state = self.state[p] p.data.mul_(self.alpha).add_(1.0 - self.alpha, param_state['cached_params']) # crucial line param_state['cached_params'].copy_(p.data) if self.pullback_momentum == "pullback": internal_momentum = self.optimizer.state[p]["momentum_buffer"] self.optimizer.state[p]["momentum_buffer"] = internal_momentum.mul_(self.alpha).add_( 1.0 - self.alpha, param_state["cached_mom"]) param_state["cached_mom"] = self.optimizer.state[p]["momentum_buffer"] elif self.pullback_momentum == "reset": self.optimizer.state[p]["momentum_buffer"] = torch.zeros_like(p.data) return loss