#!/bin/bash # # Recipe for the Dsing baseline # Based mostly on the Librispeech recipe # # Copyright 2019 Gerardo Roa # University of Sheffield # Apache 2.0 # Begin configuration section nj=40 stage=0 dsing=1 # Set: 1 for DSing1 # 3 for DSing3 # 30 for DSing30 # For TDNN-F only decode_nj=1 # End configuration section . ./utils/parse_options.sh . ./path.sh . ./cmd.sh set -e # exit on error # Sing! 300x30x2 corpus path # please change the path accordingly sing_corpus=/fastdata/acp13gr/DAMP300x30x20/sing_300x30x2 echo "Using steps and utils from WSJ recipe" [[ ! -L "wav" ]] && ln -s $sing_corpus wav [[ ! -L "steps" ]] && ln -s $KALDI_ROOT/egs/wsj/s5/steps [[ ! -L "utils" ]] && ln -s $KALDI_ROOT/egs/wsj/s5/utils trainset=train${dsing} devset="dev" testset="test" # This script also needs the phonetisaurus g2p, srilm, sox ./local/check_tools.sh || exit 1 echo; echo "===== Starting at $(date +"%D_%T") ====="; echo if [ $stage -le 1 ]; then mkdir -p data/local/dict cp conf/corpus.txt data/local/corpus.txt # Corpus.txt for language model for datadir in $devset $testset $trainset; do python local/prepare_data.py data/ wav/ conf/${datadir}.json $datadir done # Selecting the top 25000 words by frequency # Is expected that the final size will be larger as # it use all the words with the same frequency avoiding an arbitrary cut-off local/prepare_dict.sh --words 26000 utils/prepare_lang.sh data/local/dict "" data/local/lang data/lang local/train_lms_srilm.sh \ --train-text data/local/corpus.txt \ --dev_text data/dev/text \ --oov-symbol "" --words-file data/lang/words.txt \ data/ data/srilm # Compiles G for DSing Preconstructed trigram LM utils/format_lm.sh data/lang data/srilm/best_3gram.gz data/local/dict/lexicon.txt data/lang_3G utils/format_lm.sh data/lang data/srilm/best_4gram.gz data/local/dict/lexicon.txt data/lang_4G fi # Features Extraction if [[ $stage -le 2 ]]; then echo echo "=============================" echo "---- MFCC FEATURES EXTRACTION ----" echo "===== $(date +"%D_%T") =====" for datadir in $trainset $devset $testset; do echo; echo "---- $datadir" utils/fix_data_dir.sh data/$datadir steps/make_mfcc.sh --cmd "$train_cmd" --nj $nj data/${datadir} exp/make_mfcc/${datadir} mfcc steps/compute_cmvn_stats.sh data/${datadir} utils/fix_data_dir.sh data/$datadir done fi if [[ $stage -le 3 ]]; then echo echo "=============================" echo "-------- Train GMM ----------" echo echo echo "Mono" echo "===== $(date +"%D_%T") =====" # Monophone steps/train_mono.sh --nj $nj --cmd "$train_cmd" \ data/${trainset} data/lang exp/mono steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${trainset} data/lang exp/mono exp/mono_ali echo echo "Tri 1 - delta-based triphones" echo "===== $(date +"%D_%T") =====" # Tri1 steps/train_deltas.sh --cmd "$train_cmd" 2000 15000 \ data/${trainset} data/lang exp/mono_ali exp/tri1 steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${trainset} data/lang exp/tri1 exp/tri1_ali echo echo "Tri 2 - LDA-MLLT triphones" echo "===== $(date +"%D_%T") =====" # Tri2 steps/train_lda_mllt.sh --cmd "$train_cmd" 2500 20000 \ data/${trainset} data/lang exp/tri1_ali exp/tri2b steps/align_si.sh --nj $nj --cmd "$train_cmd" \ data/${trainset} data/lang exp/tri2b exp/tri2b_ali echo echo "Tri 3 - SAT triphones" echo "===== $(date +"%D_%T") =====" # Tri3 SAT steps/train_sat.sh --cmd "$train_cmd" 3000 25000 \ data/${trainset} data/lang exp/tri2b_ali exp/tri3b utils/mkgraph.sh data/lang_3G exp/tri3b exp/tri3b/graph echo echo "------ End Train GMM --------" echo "===== $(date +"%D_%T") =====" fi if [[ $stage -le 4 ]]; then echo echo "=============================" echo "------- Decode TRI3B --------" echo "===== $(date +"%D_%T") =====" echo echo; echo "--------decode ${devset}"; echo steps/decode_fmllr.sh --config conf/decode.config --nj $nj --cmd "$decode_cmd" \ --scoring-opts "--min-lmwt 10 --max-lmwt 20" --num-threads 4 \ exp/tri3b/graph data/${devset} exp/tri3b/decode_${devset} # Scoring test model with the best lmwt=$(cat exp/tri3b/decode_${devset}/scoring_kaldi/wer_details/lmwt) wip=$(cat exp/tri3b/decode_${devset}/scoring_kaldi/wer_details/wip) echo; echo "--------decode ${testset}" echo "Using [lmwt=$lmwt, wip=$wip] to score"; echo steps/decode_fmllr.sh --config conf/decode.config --nj $nj --cmd "$decode_cmd" \ --scoring-opts "--min_lmwt $lmwt --max_lmwt $lmwt --word_ins_penalty $wip" --num-threads 4 \ exp/tri3b/graph data/${testset} exp/tri3b/decode_${testset} fi # Produce clean data if [[ $stage -le 5 ]]; then echo echo "=============================" echo "------- Cleanup Tri3b -------" echo "===== $(date +"%D_%T") =====" echo steps/cleanup/clean_and_segment_data.sh --nj $nj --cmd "$train_cmd" \ --segmentation-opts "--min-segment-length 0.3 --min-new-segment-length 0.6" \ data/${trainset} data/lang exp/tri3b exp/tri3b_cleaned \ data/${trainset}_cleaned fi if [[ $stage -le 6 ]]; then echo echo "==================" echo "----- TDNN-F -----" echo "===== $(date +"%D_%T") =====" echo local/chain/run_tdnn_1d.sh --nj $nj --decode_nj $decode_nj \ --train_set ${trainset}_cleaned --test_sets "$devset $testset" \ --gmm tri3b_cleaned --nnet3-affix _${trainset}_cleaned fi if [[ $stage -le 7 ]]; then echo echo "=============================" echo "------- FINAL SCORES --------" echo "===== $(date +"%D_%T") =====" echo for x in `find exp/* -name "best_wer"`; do cat $x | grep -v ".si" done fi echo echo "===== $(date +"%D_%T") =====" echo "===== PROCESS ENDED =====" echo exit 1