"""Script to compute audio features from the original Harmonix audio files. Created by Oriol Nieto. """ import argparse import glob import json import os import time import numpy as np from pqdm.processes import pqdm import librosa INPUT_DIR = "mp3s" OUTPUT_DIR = "audio_features" OUT_JSON = "info.json" N_JOBS = 12 # Features params SR = 24000 N_FFT = 2048 HOP_LENGTH = 1024 WINDOW = "hann" CENTER = True PAD_MODE = "constant" POWER = 2.0 N_MELS = 256 MEL_FMIN = 30 MEL_FMAX = 12000 def compute_melspecs(audio): """Computes a mel-spectrogram from the given audio data.""" return librosa.feature.melspectrogram( y=audio, sr=SR, n_fft=N_FFT, hop_length=HOP_LENGTH, window=WINDOW, center=CENTER, pad_mode=PAD_MODE, power=POWER, n_mels=N_MELS, fmin=MEL_FMIN, fmax=MEL_FMAX, ) def compute_all_features(mp3_file, output_dir): """Computes all the audio features.""" # Decode and read mp3 audio, _ = librosa.load(mp3_file, sr=SR) # Compute mels mel = compute_melspecs(audio) # Save out_file = os.path.join( output_dir, os.path.basename(mp3_file).replace(".mp3", "-mel.npy") ) np.save(out_file, mel) def save_params(output_dir): """Saves the parameters to a JSON file.""" out_json = os.path.join(output_dir, OUT_JSON) out_dict = { "librosa_version": librosa.__version__, "numpy_version": np.__version__, "SR": SR, "N_FFT": N_FFT, "HOP_LENGTH": HOP_LENGTH, "WINDOW": WINDOW, "CENTER": CENTER, "PAD_MODE": PAD_MODE, "POWER": POWER, "N_MELS": N_MELS, "MEL_FMIN": MEL_FMIN, "MEL_FMAX": MEL_FMAX, } with open(out_json, "w") as fp: json.dump(out_dict, fp, indent=4) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Computes audio features for the Harmonix set.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "-i", "--input_dir", default=INPUT_DIR, action="store", help="Path to the Harmonix set audio.", ) parser.add_argument( "-o", "--output_dir", default=OUTPUT_DIR, action="store", help="Output directory.", ) parser.add_argument( "-j", "--n_jobs", default=N_JOBS, action="store", type=int, help="Number of jobs to run in parallel.", ) args = parser.parse_args() start_time = time.time() # Create output dir if doesn't exist if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Read mp3s mp3s = glob.glob(os.path.join(args.input_dir, "*.mp3")) # Compute features for each mp3 in parallel pqdm_args = [[mp3_file, args.output_dir] for mp3_file in mp3s] pqdm( pqdm_args, compute_all_features, n_jobs=args.n_jobs, argument_type="args", ) # Save parameters save_params(args.output_dir) # Done! print("Done! Took %.2f seconds." % (time.time() - start_time))