import torch import torch.nn as nn class residual_block(nn.Module): def __init__(self, i, in_channels, num_filter, kernel_size, dropout): super(residual_block, self).__init__() self.res = nn.Conv1d(in_channels=in_channels, out_channels=num_filter, kernel_size=1, padding='same') self.conv1 = nn.Conv1d(in_channels=in_channels, out_channels=num_filter, kernel_size=kernel_size, dilation=i, padding='same') self.conv2 = nn.Conv1d(in_channels=in_channels, out_channels=num_filter, kernel_size=kernel_size, dilation=i*2, padding='same') self.elu = nn.ELU() self.spatial_dropout = nn.Dropout2d(p=dropout) self.conv_final = nn.Conv1d(in_channels=num_filter * 2, out_channels=num_filter, kernel_size=1, padding='same') def forward(self, x): #x: (B, F, T) x_res = self.res(x) x_1 = self.conv1(x) x_2 = self.conv2(x) x = torch.cat([x_1, x_2], dim=1) x = self.elu(x).unsqueeze(-1) #(B, F, T, 1) x = self.spatial_dropout(x).squeeze(-1) #(B, F, T) x = self.conv_final(x) return x + x_res, x class TCN(nn.Module): def __init__(self, num_layers=11, dropout=.1, kernel_size=5, n_token=2): super(TCN, self).__init__() self.nlayers = num_layers self.conv1 = nn.Conv2d(in_channels=1, out_channels=20, kernel_size=3, stride=1, padding=(2, 0)) self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) self.dropout1 = nn.Dropout(p=dropout) self.conv2 = nn.Conv2d(in_channels=20, out_channels=20, kernel_size=(1, 12), stride=1, padding=0) self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) self.dropout2 = nn.Dropout(p=dropout) self.conv3 = nn.Conv2d(in_channels=20, out_channels=20, kernel_size=3, stride=1, padding=0) self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 3), stride=(1, 3)) self.dropout3 = nn.Dropout(p=dropout) self.tcn_layers = nn.ModuleDict({}) for layer in range(num_layers): self.tcn_layers[f'TCN_layer_{layer}'] = residual_block(i=2**layer, in_channels=20, num_filter=20, kernel_size=kernel_size, dropout=dropout) self.out_linear = nn.Linear(20, n_token) self.dropout_t = nn.Dropout(p=.5) self.out_linear_t = nn.Linear(20, 300) def forward(self, x): # x: spectrogram of size (B, T, mel_bin) x = x.unsqueeze(1) #(B, 1, T, mel_bin) x = self.conv1(x) x = self.maxpool1(x) x = self.dropout1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.dropout2(x) x = self.conv3(x) x = self.maxpool3(x) x = self.dropout3(x) #(B, 20, T, 1) x = x.squeeze(-1) #(B, 20, T) t = [] for layer in range(self.nlayers): x, skip = self.tcn_layers[f'TCN_layer_{layer}'](x) #x: B, 20, T; skip: B, 20, T t.append(skip) x = torch.relu(x).transpose(-2, -1) x = self.out_linear(x) t = torch.stack(t, axis=-1).sum(dim=-1) t = torch.relu(t) t = self.dropout_t(t) t = t.mean(dim=-1) #(batch, 20) t = self.out_linear_t(t) return x, t if __name__ == '__main__': from spectrogram_dataset import audioDataset from torch.utils.data import DataLoader DEVICE = 'cuda:2' model = TCN(num_layers=11, dropout=.15) model.to(DEVICE) model.eval() dataset = audioDataset(data_to_load=['smc'], data_path = "/data1/zhaojw/dataset/madmom_data_100fps.npz", annotation_path = "/data1/zhaojw/dataset/beat_annotation.npz", fps = 100, sample_size = None, downsample_size=1, hop_size = 128, fold = 0, num_folds = 8) print(len(dataset.train_set), len(dataset.val_set), len(dataset.test_set)) train_data = DataLoader(dataset.train_set, batch_size=1, shuffle=True) val_data = DataLoader(dataset.val_set, batch_size=1, shuffle=False) #for i, (key, instr, data, mask, beat, downbeat) in enumerate(val_data): for i, (key, data, beat, downbeat, tempo) in enumerate(val_data): print(key) data = data.float().cuda(DEVICE)#B, time, mel print(f'data: {data.shape}') print(f'beat: {beat.shape}') print(f'downbeat: {downbeat.shape}') print(f'tempo: {tempo.shape}') x, t = model(data) print(f'out: {x.shape}, {t.shape}') break